skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A [ 1 H, 15 N] Heteronuclear Single Quantum Coherence NMR Study of the Solution Reactivity of the Ruthenium‐Based Mitochondrial Calcium Uniporter Inhibitor Ru265
Abstract The synthesis and characterization of the15N‐labeled analogue of the mitochondrial calcium uptake inhibitor [Cl(NH3)4Ru(μ‐N)Ru(NH3)4Cl]3+(Ru265) bearing [15N]NH3ligands is reported. Using [1H,15N] HSQC NMR spectroscopy, the rate constants for the axial chlorido ligand aquation of [15N]Ru265 in pH 7.4 buffer at 25 °C were found to bek1=(3.43±0.03)×10−4 s−1andk2=(4.03±0.09)×10−3 s−1. The reactivity of [15N]Ru265 towards biologically relevant small molecules was also assessed via this method, revealing that this complex can form coordination bonds to anionic oxygen and sulfur donors. Time‐based studies on these ligand‐binding reactions reveal this process to be slow relative to the time required for the complex to inhibit mitochondrial calcium uptake, suggesting that hydrogen‐bonding interactions, rather than the formation of coordination bonds, may play a more significant role in mediating the inhibitory properties of this complex.  more » « less
Award ID(s):
1750295
PAR ID:
10369258
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2022
Issue:
6
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Milling two equivalents of K[1,3‐(SiMe3)2C3H3] (=K[A′]) with MgX2(X=Cl, Br) produces the allyl complex [K2MgA′4] (1). Crystals grown from toluene are of the solvated species [((η6‐tol)K)2MgA′4] ([1⋅2(tol)]), a trimetallic monomer with both bridging and terminal (η1) allyl ligands. When recrystallized from hexanes, the unsolvated1forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C−C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3‐allyl configuration on Mg is energetically preferred over the η1‐ (σ‐bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by1, with activities that are comparable to K[A′] and greater than the homometallic magnesium complex [{MgA′2}2]. 
    more » « less
  2. Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2. 
    more » « less
  3. Abstract The structure of liquid lithium pyroborate, Li4B2O5(J= Li/B = 2), has been measured over a wide temperature range by high‐energy X‐ray diffraction, and compared to that of its glass and borate liquids of other compositions. The results indicate a gradual increase in tetrahedral boron fraction from 3(1)% to 6(1)% during cooling fromT= 1271(15) to 721(8) K, consistent with the largerN4 = 10(1)% found for the glass, and literature11B nuclear magnetic resonance measurements. van't Hoff analysis based on a simple boron isomerization reaction BØ3O2⇌ BØO22–yields ΔH= 13(1) kJ mol–1and ΔS= 40(1) J mol–1 K–1for the boron coordination change from 4 to 3, which are, respectively, smaller and larger than found for singly charged isomers forJ ≤ 1. With these, we extend our model forN4(J,T), nonbridging oxygen fractionfnbr(J,T), configurational heat capacity , and entropySconf(J,T) contributions up toJ= 3. A maximum is revealed in atJ= 1, and shown semi‐quantitatively to lead to a corresponding maximum in fragility contribution, akin to that observed in the total fragilities by temperature‐modulated differential scanning calorimetry. Lithium is bound to 4.6(2) oxygen in the pyroborate liquid, with 2.7(1) bonds centered around 1.946(8) Å and 1.9(1) around 2.42(1) Å. In the glass,nLiO= 5.4(4), the increase being due to an increase in the number of short Li–O bonds. 
    more » « less
  4. ABSTRACT We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2Ru(n,n′‐dhbp)]Cl2withn = 6 and 4 in 1Aand 2A, respectively). Full characterization data are reported for 1Aand 2Aand single crystal X‐ray diffraction for 1A. Both 1Aand 2Aare diprotic acids. We have studied 1A, 1B, 2A, and 2B(B = deprotonated forms) by UV‐vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy3MLCT states relative to the acidic forms. Complexes 1Aand 2Aproduce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50light values as low as 0.50 μM with PI values as high as >200vs. MCF7. Computational studies were used to predict the energies of the3MLCT and3MC states. An inaccessible3MC state for 2Bsuggests a rationale for why photodissociation does not occur with the 4,4′‐dhbp ligand. Low dark toxicity combined with an accessible3MLCT state for1O2generation explains the excellent photocytotoxicity of 2. 
    more » « less
  5. Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III). 
    more » « less