skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Implicit Unsupervised Text Hashing using Adversarial Autoencoder
Searching for documents with semantically similar content is a fundamental problem in the information retrieval domain with various challenges, primarily, in terms of efficiency and effectiveness. Despite the promise of modeling structured dependencies in documents, several existing text hashing methods lack an efficient mechanism to incorporate such vital information. Additionally, the desired characteristics of an ideal hash function, such as robustness to noise, low quantization error and bit balance/uncorrelation, are not effectively learned with existing methods. This is because of the requirement to either tune additional hyper-parameters or optimize these heuristically and explicitly constructed cost functions. In this paper, we propose a Denoising Adversarial Binary Autoencoder (DABA) model which presents a novel representation learning framework that captures structured representation of text documents in the learned hash function. Also, adversarial training provides an alternative direction to implicitly learn a hash function that captures all the desired characteristics of an ideal hash function. Essentially, DABA adopts a novel single-optimization adversarial training procedure that minimizes the Wasserstein distance in its primal domain to regularize the encoder’s output of either a recurrent neural network or a convolutional autoencoder.We empirically demonstrate the effectiveness of our proposed method in capturing the intrinsic semantic manifold of the related documents. The proposed method outperforms the current state-of-the-art shallow and deep unsupervised hashing methods for the document retrieval task on several prominent document collections.  more » « less
Award ID(s):
1838730 1707498 1619028
PAR ID:
10142771
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of The Web Conference (WWW)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hashing is a fundamental operation in database management, playing a key role in the implementation of numerous core database data structures and algorithms. Traditional hash functions aim to mimic a function that maps a key to a random value, which can result in collisions, where multiple keys are mapped to the same value. There are many well-known schemes like chaining, probing, and cuckoo hashing to handle collisions. In this work, we aim to study if using learned models instead of traditional hash functions can reduce collisions and whether such a reduction translates to improved performance, particularly for indexing and joins. We show that learned models reduce collisions in some cases, which depend on how the data is distributed. To evaluate the effectiveness of learned models as hash function, we test them with bucket chaining, linear probing, and cuckoo hash tables. We find that learned models can (1) yield a 1.4x lower probe latency, and (2) reduce the non-partitioned hash join runtime with 28% over the next best baseline for certain datasets. On the other hand, if the data distribution is not suitable, we either do not see gains or see worse performance. In summary, we find that learned models can indeed outperform hash functions, but only for certain data distributions. 
    more » « less
  2. Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a challenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism. 
    more » « less
  3. null (Ed.)
    In this paper, we explore text classification with extremely weak supervision, i.e., only relying on the surface text of class names. This is a more challenging setting than the seed-driven weak supervision, which allows a few seed words per class. We opt to attack this problem from a representation learning perspective—ideal document representations should lead to nearly the same results between clustering and the desired classification. In particular, one can classify the same corpus differently (e.g., based on topics and locations), so document representations should be adaptive to the given class names. We propose a novel framework X-Class to realize the adaptive representations. Specifically, we first estimate class representations by incrementally adding the most similar word to each class until inconsistency arises. Following a tailored mixture of class attention mechanisms, we obtain the document representation via a weighted average of contextualized word representations. With the prior of each document assigned to its nearest class, we then cluster and align the documents to classes. Finally, we pick the most confident documents from each cluster to train a text classifier. Extensive experiments demonstrate that X-Class can rival and even outperform seed-driven weakly supervised methods on 7 benchmark datasets. 
    more » « less
  4. Information Retrieval (IR) plays a pivotal role indiverse Software Engineering (SE) tasks, e.g., bug localization and triaging, bug report routing, code retrieval, requirements analysis, etc. SE tasks operate on diverse types of documents including code, text, stack-traces, and structured, semi-structured and unstructured meta-data that often contain specialized vocabularies. As the performance of any IR-based tool critically depends on the underlying document types, and given the diversity of SE corpora, it is essential to understand which models work best for which types of SE documents and tasks.We empirically investigate the interaction between IR models and document types for two representative SE tasks (bug localization and relevant project search), carefully chosen as they require a diverse set of SE artifacts (mixtures of code and text),and confirm that the models’ performance varies significantly with mix of document types. Leveraging this insight, we propose a generalized framework, SRCH, to automatically select the most favorable IR model(s) for a given SE task. We evaluate SRCH w.r.t. these two tasks and confirm its effectiveness. Our preliminary user study shows that SRCH’s intelligent adaption of the IR model(s) to the task at hand not only improves precision and recall for SE tasks but may also improve users’ satisfaction. 
    more » « less
  5. Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder. 
    more » « less