skip to main content


Title: Experimental and Computational Studies on Superhard Material Rhenium Diboride under Ultrahigh Pressures
An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.  more » « less
Award ID(s):
1904164
NSF-PAR ID:
10142912
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
13
Issue:
7
ISSN:
1996-1944
Page Range / eLocation ID:
1657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K0= 397 GPa and its first pressure derivative K0'= 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ~1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extreme environments. 
    more » « less
  2. The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (𝐾′) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as 𝛽a : 𝛽b : 𝛽c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremolite’s notable metastability range hinges on the calcium cation’s bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth. 
    more » « less
  3. null (Ed.)
    Thermoelastic behavior of transition metal boride Os2B3 was studied under quasi-hydrostatic and isothermal conditions in a Paris-Edinburgh cell to 5.4 GPa and 1273 K. In-situ Energy Dispersive X-ray diffraction was used to determine interplanar spacings of the hexagonal crystal structure and thus the volume and axial compression. P-V-T data were fitted to a 3rd Order Birch-Murnaghan equation of state with a temperature modification to determine thermal elastic constants. The bulk modulus was shown to be K0 = 402 ± 21 GPa when the first pressure derivative was held to K0’ = 4.0 from the room temperature P-V curve. Under a quadratic fit α=α_0+α_1 T-α_2 T^(-2), the thermal expansion coefficients were determined to be α_0=1.862×10^(-5) K-1, α_1=0.841×10^(-9) K-2, and α_2=-0.525 K. Density functional theory (DFT) with the quasi-harmonic approximation (QHA) were further employed to study Os2B3, including its P-V-T curves, phonon spectra, bulk modulus, specific heat, thermal expansion, and the Grüneisen parameter. A good agreement between the first-principle theory and experimental observations was achieved, highlighting the success of the Armiento-Mattsson 2005 generalized gradient approximation functional employed in this study and QHA for describing thermodynamic properties of Os2B3. 
    more » « less
  4. null (Ed.)
    Abstract The compression behavior of osmium metal was investigated up to 280 GPa (volume compression V/Vo =0.725) under nonhydrostatic conditions at ambient temperature using angle dispersive axial x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both diffraction techniques in DAC employed platinum as an internal pressure standard. Density functional theory (DFT) calculations were also performed, and the computed lattice parameters and volumes under compression are in good agreement with the experiments. DFT predicts a monotonous increase in axial ratio (c/a) with pressure and the structural anomalies of less than 1 % in (c/a) ratio below 150 GPa were not reproduced in theoretical calculations and hydrostatic measurements. The measured value of shear strength of osmium (τ) approaches a limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the studies of shear and tensile deformations. The theoretical ideal shear stress is found along the (001)[1-10] shear direction with the maximal shear stress ~24 GPa at critical strain ~0.13. 
    more » « less
  5. null (Ed.)
    Abstract Olivine is the most abundant mineral in the Earth's upper mantle and subducting slabs. Studying the structural evolution and equation of state of olivine at high-pressure is of fundamental importance in constraining the composition and structure of these regions. Hydrogen can be incorporated into olivine and significantly influence its physical and chemical properties. Previous infrared and Raman spectroscopic studies indicated that local structural changes occur in Mg-rich hydrous olivine (Fo ≥ 95; 4883–9000 ppmw water) at high-pressure. Since water contents of natural olivine are commonly <1000 ppmw, it is inevitable to investigate the effects of such water contents on the equation of state (EoS) and structure of olivine at high-pressure. Here we synthesized a low water content hydrous olivine (Fo95; 1538 ppmw water) at low SiO2 activity and identified that the incorporated hydrogens are predominantly associated with the Si sites. We performed high-pressure single-crystal X-ray diffraction experiments on this olivine to 29.9 GPa. A third-order Birch-Murnaghan equation of state (BM3 EoS) was fit to the pressure-volume data, yielding the following EoS parameters: VT0 = 290.182(1) Å3, KT0 = 130.8(9) GPa, and K′T0 = 4.16(8). The KT0 is consistent with those of anhydrous Mg-rich olivine, which indicates that such low water content has negligible effects on the bulk modulus of olivine. Furthermore, we carried out the structural refinement of this hydrous olivine as a function of pressure to 29.9 GPa. The results indicate that, similar to the anhydrous olivine, the compression of the M1-O and M2-O bonds are comparable, which are larger than that of the Si-O bonds. The compression of M1-O and M2-O bonds of this hydrous olivine are comparable with those of anhydrous olivine, while the Si-O1 and Si-O2 bonds in the hydrous olivine are more compressible than those in the anhydrous olivine. Therefore, this study suggests that low water content has negligible effects on the EoS of olivine, though the incorporation of water softens the Si-O1 and Si-O2 bond. 
    more » « less