The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1−10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications.
more »
« less
This content will become publicly available on December 1, 2025
High-pressure phase transition of olivine-type Mg2GeO4 to a metastable forsterite-III type structure and their equations of state
Abstract Germanates are often used as structural analogs of planetary silicates. We have explored the high-pressure phase relations in Mg2GeO4 using diamond-anvil cell experiments combined with synchrotron X-ray diffraction and computations based on density functional theory. Upon room temperature compression, forsterite-type Mg2GeO4 remains stable up to 30 GPa. At higher pressures, a phase transition to a forsterite-III type (Cmc21) structure was observed, which remained stable to the peak pressure of 105 GPa. Using a third-order Birch Murnaghan fit to the experimental data, we obtained V0 = 305.1(3) Å3, K0 = 124.6(14) GPa, and K0′ = 3.86 (fixed) for forsterite-type Mg2GeO4 and V0 = 263.5(15) Å3, K0 = 175(7) GPa, and K0′ = 4.2 (fixed) for the forsterite-III type phase. The forsterite-III type structure was found to be metastable when compared to the stable assemblage of perovskite/post-perovskite + MgO, as observed during laser-heating experiments. Understanding the phase relations and physical properties of metastable phases is crucial for studying the mineralogy of impact sites, understanding metastable wedges in subducting slabs, and interpreting the results of shock compression experiments.
more »
« less
- Award ID(s):
- 1901813
- PAR ID:
- 10576888
- Publisher / Repository:
- arxiv
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 109
- Issue:
- 12
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 2052 to 2059
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.more » « less
-
Goethite is a major iron-bearing sedimentary mineral on Earth. In this study, we conducted in situ high-pressure x-ray diffraction, Raman, and electrical impedance spectroscopy measurements of goethite using a diamond anvil cell (DAC) at room temperature and high pressures up to 32 GPa. We observed feature changes in both the Raman spectra and electrical resistance at about 5 and 11 GPa. However, the x-ray diffraction patterns show no structural phase transition in the entire pressure range of the study. The derived pressure-volume (P-V) data show a smooth compression curve with no clear evidence of any second-order phase transition. Fitting the volumetric data to the second-order Birch–Murnaghan equation of state yields V0 = 138.9 ± 0.5 Å3 and K0 = 126 ± 5 GPa.more » « less
-
Abstract The response of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high‐pressure behavior. Here, we have carried out an in situ X‐ray diffraction study of laser‐shocked polycrystalline and single‐crystal forsterite (a‐,b‐, andc‐orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end‐station of the Linac Coherent Light Source. Under laser‐based shock loading, forsterite does not transform to the high‐pressure equilibrium assemblage of MgSiO3bridgmanite and MgO periclase, as has been suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed‐phase region from 33 to 75 GPa for both polycrystalline and single‐crystal samples. Densities inferred from X‐ray diffraction data are consistent with earlier gas‐gun shock data. At higher stress, the response is sample‐dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]‐ and [001]‐oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]‐oriented forsterite adopts an unknown phase at 122 GPa. The first two sharp diffraction peaks of amorphous Mg2SiO4show a similar trend with compression as those observed for MgSiO3in both recent static‐ and laser‐driven shock experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free‐electron laser X‐ray sources for probing the temporal evolution of high‐pressure silicate structures through the nanosecond‐scale events of shock compression and release.more » « less
-
High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K0= 397 GPa and its first pressure derivative K0'= 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ~1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extreme environments.more » « less