Abstract The Amundsen Sea Embayment of the West Antarctic Ice Sheet contains Thwaites and Pine Island Glaciers, two of the most rapidly changing glaciers in Antarctica. To date, Pine Island and Thwaites Glaciers have only been observed by independent airborne radar sounding surveys, but a combined cross‐basin analysis that investigates the basal conditions across the Pine Island‐Thwaites Glaciers boundary has not been performed. Here, we combine two radar surveys and correct for their differences in system parameters to produce unified englacial attenuation and basal relative reflectivity maps spanning both Pine Island and Thwaites Glaciers. Relative reflectivities range from −24.8 to +37.4 dB with the highest values beneath fast‐flowing ice at the ice sheet margin. By comparing our reflectivity results with previously derived radar specularity and trailing bed echoes at Thwaites Glacier, we find a highly diverse subglacial landscape and hydrologic conditions that evolve along‐flow. Together, these findings highlight the potential for joint airborne radar analysis with ground‐based seismic and geomorphological observations to understand variations in the bed properties and cross‐catchment interactions of ice streams and outlet glaciers.
more »
« less
Multidecadal observations of the Antarctic ice sheet from restored analog radar records
Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.
more »
« less
- Award ID(s):
- 1745137
- PAR ID:
- 10143100
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 38
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 18867 to 18873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ice sheets reshape Earth’s surface. Maps of the landscape formed by past ice sheets are our best tool for reconstructing historic ice sheet behavior. But models of glacier erosion and deposition that explain mapped features are relatively untested, and without observations of landforms developing in situ, postglacial landscapes can provide only qualitative insight into past ice sheet conditions. Here we present the first swath radar data collected in Antarctica, demonstrating the ability of swath radar technology to map the subglacial environment of Thwaites Glacier (West Antarctica) at comparable resolutions to digital elevation models of deglaciated terrain. Incompatibility between measured bedform orientation and predicted subglacial water pathways indicates that ice, not water, is the primary actor in initiating bedform development at Thwaites Glacier. These data show no clear relationship between morphology and glacier speed, a weak relationship between morphology and basal shear stress, and highlight a likely role for preexisting geology in glacial bedform shape.more » « less
-
Abstract We used measurements of radar-detected stratigraphy, surface ice-flow velocities and accumulation rates to investigate relationships between local valley-glacier and regional ice-sheet dynamics in and around the Schmidt Hills, Pensacola Mountains, Antarctica. Ground-penetrating radar profiles were collected perpendicular to the long axis of the Schmidt Hills and the margin of Foundation Ice Stream (FIS). Within the valley confines, the glacier consists of blue ice, and profiles show internal stratigraphy dipping steeply toward the nunataks and truncated at the present-day ablation surface. Below the valley confines, the blue ice is overlain by firn. Data show that upward-progressing overlap of actively accumulating firn onto valley-glacier ice is slightly less than ice flow out of the valleys over the past ∼1200 years. The apparent slightly negative mass balance (-0.25 cm a -1 ) suggests that ice-margin elevations in the Schmidt Hills may have lowered over this time period, even without a change in the surface elevation of FIS. Results suggest that (1) mass-balance gradients between local valley glaciers and regional ice sheets should be considered when using local information to estimate regional ice surface elevation changes; and (2) interpretation of shallow ice structures imaged with radar can provide information about local ice elevation changes and stability.more » « less
-
Abstract Hercules Dome is a prospective ice‐core site due to its setting in the bottleneck between East and West Antarctica. If ice from the last interglacial period has been preserved there, it could provide critical insight into the history of the West Antarctic Ice Sheet. The likelihood of a continuous, well‐resolved, easily interpretable climate record preserved in ice extracted from Hercules Dome depends in part on the persistence of ice‐flow dynamics at the divide. Significant changes in ice drawdown on either side of the divide, toward the Ross or Ronne ice shelves, could change the relative thickness of layers and the deposition environment represented in the core. Here, we use radar sounding to survey the ice flow at Hercules Dome. Repeated radar acquisitions show that vertical velocities are consistent with expectations for an ice divide with a frozen bed. Polarimetric radar acquisitions capture the ice‐crystal orientation fabric (COF) which develops as ice strains, so it depends on both the pattern of ice flow and the time over which flow has been consistent. We model the timescales for COF evolution, finding that the summit of Hercules Dome has been dynamically stable in its current configuration, at least over the last five thousand years, a time period during which the Antarctic ice sheet was undergoing significant retreat at its margins. The evident stability may result from a prominent bedrock ridge under the divide, which had not been previously surveyed and has therefore not been represented in the bed geometry of coarsely resolved ice‐sheet models.more » « less
-
ABSTRACT The catchments of Pine Island Glacier and Thwaites Glacier in the Amundsen Sea Embayment are two of the largest, most rapidly changing, and potentially unstable sectors of the West Antarctic Ice Sheet. They are also neighboring outlets, separated by the topographically unconfined eastern shear margin of Thwaites Glacier and the southwest tributary of Pine Island Glacier. This tributary begins just downstream of the eastern shear margin and flows into the Pine Island ice shelf. As a result, it is a potential locus of interaction between the two glaciers and could result in cross-catchment feedback during the retreat of either. Here, we analyze relative basal reflectivity profiles from three radar sounding survey lines collected using the UTIG HiCARS radar system in 2004 and CReSIS MCoRDS radar system in 2012 and 2014 to investigate the extent and character of ocean access beneath the southwest tributary. These profiles provide evidence of ocean access ~12 km inland of the 1992–2011 InSAR-derived grounding line by 2014, suggesting either retreat since 2011 or the intrusion of ocean water kilometers inland of the grounding line.more » « less