skip to main content


Title: Firn Clutter Constraints on the Design and Performance of Orbital Radar Ice Sounders
Radar sounding is a powerful tool for constraining subglacial conditions, which influence the mass balance of polar ice sheets and their contributions to global sea-level rise. A satellite-based radar sounder, such as those successfully demonstrated at Mars, would offer unprecedented spatial and temporal coverage of the subsurface. However, airborne sounding studies suggest that poorly constrained radar scattering in polar firn may produce performance-limiting clutter for terrestrial orbital sounders. We develop glaciologically constrained electromagnetic models of radar interactions in firn, test them against in situ data and multifrequency airborne radar observations, and apply the only model we find to be consistent with observation to assess the implications of firn clutter for orbital sounder system design. Our results show that in the very high-frequency (VHF) and ultrahigh-frequency (UHF) bands, radar interactions in the firn are dominated by quasi-specular reflections at the interfaces between layers of different densities and that off-nadir backscatter is likely the result of small-scale roughness in the subsurface density profiles. As a result, high frequency (HF) or low VHF center frequencies offer a significant advantage in near-surface clutter suppression compared to the UHF band. However, the noise power is the dominant constraint in all bands, so the near-surface clutter primarily constrains the extent to which the transmit power, pulselength, or antenna gain can be engineered to improve the signal-to-noise ratio. Our analysis suggests that the deep interior of terrestrial ice sheets is a difficult target for orbital sounding, which may require optimizations in azimuth processing and cross-track clutter suppression which complement existing requirements for sounding at the margins.  more » « less
Award ID(s):
1745137
NSF-PAR ID:
10143105
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Geoscience and Remote Sensing
ISSN:
0196-2892
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radar sounding of ice from orbit has been successful on Mars [1], is planned for the Galilean satellites [2], and is attractive for earth [3] as a complement to current airborne instruments [4], but of major concern is the poorly constrained but potentially seriously limiting contribution of firn clutter [5]. To inform this issue, we analytically model electromagnetic scattering in the upper 100 meters of the ice column for continental ice sheets and evaluate the effects of variable platform altitude, frequency, and range resolution on clutter power. Our results show that volume scattering from air inclusions is insignificant and unlikely to constrain deep ice sounding. Rather, firn scattering is dominated by quasispecular reflections from layers of varying density which, at orbital altitudes, may contribute significantly to clutter due to the small angles of illumination. This layer clutter can be mitigated by a careful choice of range resolution for center frequencies below 200 MHz, but is practically unavoidable above 250 MHz. Firn layer clutter is likely to significantly constrain UHF orbital ice sounding, making a VHF instrument the more practical choice. 
    more » « less
  2. This paper demonstrates the design and implementation of two dual-polarized ultra-wideband antennas for radar ice sounding. The first antenna operates at UHF (600– 900 MHz). The second antenna operates at VHF (140–215 MHz). Each antenna element is composed of two orthogonal octagon-shaped dipoles, two inter-locked printed circuit baluns and an impedance matching network for each polarization. We built and tested one prototype antenna for each band and showed a VSWR of less than 2:1 at both polarizations over a fractional bandwidth exceeding 40 %. Our antennas display cross-polarization isolation larger than 30 dB, an E-plane 3-dB beamwidth of 69 degrees, and a gain of at least 4 dBi with a variation of ± 1 dB across the bandwidth. We demonstrate peak power handling capabilities of 400-W and 1000-W for the UHF and VHF bands, respectively. Our design flow allows for straightforward adjustment of the antenna dimensions to meet other bandwidth constraints. 
    more » « less
  3. Abstract

    In airborne radargrams, undulating periodic patterns in amplitude that overprint traditional radiostratigraphic layering are occasionally observed, however, they have yet to be analyzed from a geophysical or glaciological perspective. We present evidence supported by theory that these depth‐periodic patterns are consistent with a modulation of the received radar power due to the birefringence of polar ice, and therefore indicate the presence of bulk fabric anisotropy. Here, we investigate the periodic component of birefringence‐induced radar power recorded in airborne radar data at the eastern shear margin of Thwaites Glacier and quantify the lateral variation in azimuthal fabric strength across this margin. We find the depth variability of birefringence periodicity crossing the shear margin to be a visual expression of its shear state and its development, which appears consistent with present‐day ice deformation. The morphology of the birefringent patterns is centered at the location of maximum shear and observed in all cross‐margin profiles, consistent with predictions of ice fabric when subjected to simple shear. The englacial fabric appears stronger inside the ice stream than outward of the shear margin. The detection of birefringent periodicity from non‐polarimetric radargrams presents a novel use of subsurface radar to constrain lateral variations in fabric strength, locate present and past shear margins, and characterize the deformation history of polar ice sheets.

     
    more » « less
  4. Abstract

    Recent results from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument have been interpreted as evidence of subsurface brine pooled beneath 1.3 km‐thick South Polar Layered Deposit (SPLD). This interpretation is based on the assumption that the regionally high strength of MARSIS radar reflections from the base of the ice cap is due to a strong contrast in dielectric permittivity across the basal interface. Here, we demonstrate that the high‐power reflections could instead be the result of a contrast in electric conductivity. While not explicitly excluding a liquid brine, our results open new potential explanations for the observed strong radar reflections, some of which do not require liquid brine beneath SPLD. Potential basal materials with suitably high conductivity include clays, metal‐bearing minerals, or saline ice.

     
    more » « less
  5. Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales. 
    more » « less