In this article, a compact multiband antenna design and analysis is presented with a view of ensuring efficient uplink/downlink communications at the same time from a single antenna for CubeSat applications. This design shares the aperture of an S-band slot antenna to accommodate a square patch antenna operating in the X-band. Shared aperture antennas, along with an air gap and dielectric loading, provided good gain in both frequency bands. The S-band patch had an S11 = −10 dB bandwidth of 30 MHz (2013–2043 MHz, 1.5%), and the X-band antenna demonstrated a bandwidth of 210 MHz (8320–8530 MHz, 2.5%). The Axial Ratio (<3 dB) bandwidth of the slot antenna in the S-band is 7 MHz (2013–2020 MHz, 0.35%), and it is 67 MHz (8433–8500 MHz, 0.8%) in the case of patch antenna in the X-band. While the maximum gain in the S-band reached 7.7 dBic, in the X-band, the peak gain was 12.8 dBic. This performance comparison study shows that the antenna is advantageous in terms of high gain, maintains circular polarization over a wideband, and can replace two antennas needed in CubeSats for uplink/downlink, which essentially saves space.
Broadband Dual-Polarized Planar Antennas for Radar With Printed Circuit Balun
This paper demonstrates the design and implementation of two dual-polarized ultra-wideband antennas for radar ice sounding. The first antenna operates at UHF (600– 900 MHz). The second antenna operates at VHF (140–215 MHz). Each antenna element is composed of two orthogonal octagon-shaped dipoles, two inter-locked printed circuit baluns and an impedance matching network for each polarization. We built and tested one prototype antenna for each band and showed a VSWR of less than 2:1 at both polarizations over a fractional bandwidth exceeding 40 %. Our antennas display cross-polarization isolation larger than 30 dB, an E-plane 3-dB beamwidth of 69 degrees, and a gain of at least 4 dBi with a variation of ± 1 dB across the bandwidth. We demonstrate peak power handling capabilities of 400-W and 1000-W for the UHF and VHF bands, respectively. Our design flow allows for straightforward adjustment of the antenna dimensions to meet other bandwidth constraints.
more »
« less
- Award ID(s):
- 1738934
- NSF-PAR ID:
- 10317846
- Date Published:
- Journal Name:
- 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved.more » « less
-
null (Ed.)With the development of the Internet of Things (IoT), the demand for thin and wearable electronic devices is growing quickly. The essential part of the IoT is communication between devices, which requires radio-frequency (RF) antennas. Metals are widely used for antennas; however, their bulkiness limits the fabrication of thin, lightweight, and flexible antennas. Recently, nanomaterials such as graphene, carbon nanotubes, and conductive polymers came into play. However, poor conductivity limits their use. We show RF devices for wireless communication based on metallic two-dimensional (2D) titanium carbide (MXene) prepared by a single-step spray coating. We fabricated a ~100-nm-thick translucent MXene antenna with a reflection coefficient of less than −10 dB. By increasing the antenna thickness to 8 μm, we achieved a reflection coefficient of −65 dB. We also fabricated a 1-μm-thick MXene RF identification device tag reaching a reading distance of 8 m at 860 MHz. Our finding shows that 2D titanium carbide MXene operates below the skin depth of copper or other metals as well as offers an opportunity to produce transparent antennas. Being the most conductive, as well as water-dispersible, among solution-processed 2D materials, MXenes open new avenues for manufacturing various classes of RF and other portable, flexible, and wearable electronic devices.more » « less
-
This paper presents a wideband circularly polarized antenna for small satellites to be used with NASA Near- Earth Networks (NEN). This single-fed stacked antenna utilizes the electromagnetic coupling concept and is usable with a duplex transceiver. The circularly-polarized antenna employs hybrid perturbations on stacked patches and covers NASA NEN’s both uplink and downlink frequencies, thus replacing the conventional requirement of two separate antennas. It provides a notable wide axial ratio (AR) < 3 dB bandwidth of 1.16 GHz from 7.02 GHz to 8.18 GHz (15.3%). The optimized patch dimensions provide 34.6% VSWR ~ 2 bandwidth from 6,525 MHz to 9,253 MHz. The overall antenna size is 17 mm × 17 mm × 6.6 mm, and has a peak gain of 7.9 dBi. This proposed antenna will overcome solar cell space constraint on smallsat’s outer wall by saving at least 50% area required by the conventional two-antenna method.more » « less
-
This research proposes an inkjet printed dual-band dual-sense circularly polarized antenna using CPW-feeding on PET substrate. The antenna is designed and optimized using ANSYS HFSS, which operates at 4.01 GHz - 5.05 GHz (22.96%) and 6.23 GHz - 7.58 GHz (19.55%) with a return loss of <−10 dB. On top of that, the antenna shows an axial ratio of less than 3 dB at 4.23 GHz - 4.62 GHz (8.81%) and 7.11 GHz - 7.36 GHz (3.45%), whereas left hand circular polarization (LHCP) is observed in the first band and right hand circular polarization (RHCP) is observed in the second band. The overall dimensions of the antenna is x x , where is the free-space wavelength at the lowest circular polarization frequency. Measurement of the fabricated version shows good agreement with the simulated version. To the best of author’s knowledge, this proposed design is the first circularly polarized …more » « less