skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy ( E ν  >  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint ( m i P1  ≲ 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z  = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si  II absorption and a fairly normal rest-frame r -band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5 σ limiting magnitude of m i P1  ≈ 22 mag, between 1 day and 25 days after detection.  more » « less
Award ID(s):
1912764
PAR ID:
10143166
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
626
ISSN:
0004-6361
Page Range / eLocation ID:
A117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We report on the search for optical counterparts to IceCube neutrino alerts released between 2016 April and 2021 August with the All-Sky Automated Survey for SuperNovae (ASAS-SN). Despite the discovery of a diffuse astrophysical high-energy neutrino flux in 2013, the source of those neutrinos remains largely unknown. Since 2016, IceCube has published likely astrophysical neutrinos as public real-time alerts. Through a combination of normal survey and triggered target-of-opportunity observations, ASAS-SN obtained images within 1 h of the neutrino detection for 20 per cent (11) of all observable IceCube alerts and within one day for another 57 per cent (32). For all observable alerts, we obtained images within at least two weeks from the neutrino alert. ASAS-SN provides the only optical follow-up for about 17 per cent of IceCube’s neutrino alerts. We recover the two previously claimed counterparts to neutrino alerts, the flaring-blazar TXS 0506 + 056 and the tidal disruption event AT2019dsg. We investigate the light curves of previously detected transients in the alert footprints, but do not identify any further candidate neutrino sources. We also analysed the optical light curves of Fermi 4FGL sources coincident with high-energy neutrino alerts, but do not identify any contemporaneous flaring activity. Finally, we derive constraints on the luminosity functions of neutrino sources for a range of assumed evolution models. 
    more » « less
  2. Abstract In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes. Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able to perform classification with or without redshift, but we show that incorporating redshift information improves performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift), and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe (r< 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time photometric transient classification problem. All of the data processing and model code developed for this paper can be found in the SCONE software package11github.com/helenqu/sconelocated at github.com/helenqu/scone (Qu 2021). 
    more » « less
  3. Abstract We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range ( g − i ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in g − i . We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°. 
    more » « less
  4. Abstract With the advent of the Vera C. Rubin Observatory, the discovery rate of supernovae (SNe) will surpass the rate of SNe with real time spectroscopic follow-up by 3 orders of magnitude. Accurate photometric classifiers are essential to both select interesting events for follow-up in real time and for archival population-level studies. In this work, we investigate the impact of observable host-galaxy information on the classification of SNe, both with and without additional light-curve and redshift information. We find that host-galaxy information alone can successfully isolate relatively pure (>90%) samples of Type Ia SNe with or without redshift information. With redshift information, we can additionally produce somewhat pure (>70%) samples of Type II SNe and superluminous SNe. Additionally with redshift information, host-galaxy properties do not significantly improve the accuracy of SN classification when paired with complete light curves. In the absence of redshift information, however, galaxy properties significantly increase the accuracy of photometric classification. As a part of this analysis, we present the first formal application of a new objective function, the weighted hierarchical cross entropy, to the problem of SN classification. This objective function more naturally accounts for the hierarchical nature of SN classes and, more broadly, transients. Finally, we present a new set of SN classifications for the Pan-STARRS Medium Deep Survey of SNe that lack spectroscopic redshift, increasing the full photometric sample to >4400 events. 
    more » « less
  5. Abstract Seeing pristine material from the donor star in a type Ia supernova (SN Ia) explosion can reveal the nature of the binary system. In this paper, we present photometric and spectroscopic observations of SN 2020esm, one of the best-studied SNe of the class of “super-Chandrasekhar” SNe Ia (SC SNe Ia), with data obtained −12 to +360 days relative to peak brightness, obtained from a variety of ground- and space-based telescopes. Initially misclassified as a type II supernova, SN 2020esm peaked at M B = −19.9 mag, declined slowly (Δ m 15 ( B ) = 0.92 mag), and had particularly blue UV and optical colors at early times. Photometrically and spectroscopically, SN 2020esm evolved similarly to other SC SNe Ia, showing the usual low ejecta velocities, weak intermediate-mass elements, and the enhanced fading at late times, but its early spectra are unique. Our first few spectra (corresponding to a phase of ≳10 days before peak) reveal a nearly pure carbon/oxygen atmosphere during the first days after explosion. This composition can only be produced by pristine material, relatively unaffected by nuclear burning. The lack of H and He may further indicate that SN 2020esm is the outcome of the merger of two carbon/oxygen white dwarfs. Modeling its bolometric light curve, we find an 56 Ni mass of 1.23 − 0.14 + 0.14 M ☉ and an ejecta mass of 1.75 − 0.20 + 0.32 M ☉ , in excess of the Chandrasekhar mass. Finally, we discuss possible progenitor systems and explosion mechanisms of SN 2020esm and, in general, the SC SNe Ia class. 
    more » « less