skip to main content


Title: In situ polymerization and polymer grafting to stabilize polymer-functionalized nanoparticles in polymer matrices
Award ID(s):
1942508
NSF-PAR ID:
10143250
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
127
Issue:
13
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 134701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incorporation of nanoparticles into polymer blend films can lead to a synergistic combination of properties and functionalities. Adding a large concentration of nanoparticles into a polymer blend matrix via conventional melting or solution blending techniques, however, is challenging due to the tendency of particles to aggregate. Herein, we report a straightforward approach to generate polymer blend/nanoparticle ternary composite films with extremely high loadings of nanoparticles based on monomer-driven infiltration of polymer and photopolymerization. The fabrication process consists of three steps: (1) preparing a bilayer with a nanoparticle (NP) layer atop a polymer layer, (2) annealing of the bilayer with a vapour mixture of a monomer and a photoinitiator, which undergoes capillary condensation and imparts mobility to the polymer layer and (3) exposing this film to UV light to induce photopolymerization of the monomer. The monomer used in this process is chemically different from the repeat unit of the polymer in the bilayer and is a good solvent for the polymer. The second step leads to the infiltration of the plasticized polymer, and the third step results in a blend of two polymers in the interstices of the nanoparticle layer. By varying the thickness ratio of the polymer and nanoparticle layers in the initial bilayers and changing the UV exposure duration, the volume fraction of the two polymers in the composite films can be adjusted. This versatile approach enables the design and engineering of a new class of nanocomposite films that contain a nanoscale-blend of two polymers in the interstices of a nanoparticle film, which could have combinations of unique mechanical and transport properties desirable for advanced applications such as membrane separations, conductive composite films and solar cells. Moreover, these polymer blend-filled nanoparticle films could serve as model systems to study the effect of confinement on the miscibility and morphology of polymer blends. 
    more » « less
  2. Abstract

    In the broader polymer field, the term ‘crystallinity’ is often used rather loosely. However, increasingly, it becomes critical to clearly distinguish between degree of crystallinity, which provides the fractional amount of crystalline phase in a polymer, and the crystalline quality, which describes the perfection of the crystalline moieties that may form in a polymer. The reason is that these different structural features dictate important properties of plastic materials, including the mechanical properties of commodity polymers and the behavior of macromolecular ferroelectrics; they also determine which photophysical processes occur in semiconducting polymers. Hence, rigor needs to be applied when establishing structure/processing/property interrelations; and it should become a general practice that specific functions are clearly attributed to the degree of crystallinity, the crystalline quality or a combination of the two. In this perspective,in memoriamof Professor Dick Jones, a long‐time member of IUPAC's Polymer Division, we discuss the challenges of identifying—and distinguishing between—these important structural characteristics when using commonly applied measuring techniques and/or theoretical approaches. This task is often elaborate, as small changes in the chemical nature of the polymer and/or processing conditions selected can have drastic effects on both the crystalline quality and the degree of crystallinity, an issue that combined with the general ambiguity of data obtained with methodologies used to characterize polymer structures, theoretically or experimentally based. © 2023 The Authors.Polymer Internationalpublished by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

     
    more » « less
  3. Abstract

    Donor‐acceptor (D−A) frameworks have been produced via the copolymerization of the strong donor dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) with ambipolar thieno[3,4‐b]pyrazine (TP) units to generate soluble, processible materials with band gaps as low as 0.8 eV. Optical and electronic characterization of the DTP‐TP copolymers illustrate common misconceptions in the relative contributions of the comonomers to the D‐A framework, as well as highlighting the challenges of minimizing band gap while also retaining desirable frontier orbital energies for application to technological devices.

     
    more » « less