The behavior of cross-linking polymer solutions as they transition from liquid-like to solid-like material in flow determines success or failure in several applications. Dilute polymer solutions flow easily, while concentrated polymers or crosslinked polymer gels can clog pores, nozzles, or channels. We have recently described a third regime of flow dynamics in polymers that occurs when cross-linking happens during flow: persistent intermittency. When a dilute alginate solution meets calcium at a Y-shaped microfluidic junction, a persistent and regular pattern of gel deposition and ablation emerges when driven at a constant volumetric flow rate. Chemical concentrations and flow rate control both the gel deposition and critical shear stress required to ablate the adhered gel. In this work, we provide an analytical framework to quantitatively describe the intermittent behavior as resulting from diffusively driven deposition in a high Peclet number flow. Fitting the experimental data shows that higher component concentrations lead to more efficient deposition and more swollen gels. Increasing the flow rate increases the deposition rate, but the resulting gels are much less swollen. Ablation occurs when applied shear stresses overcome either the adhesive energy of the gel or its yield stress. The shear stress required at ablation decreases with increased component concentrations. By correlating the results of the analytical analysis with bulk rheology measurements, we find that deposition efficiency increases with the stiffness of the gel formed in flow. Softer gels withstand higher shear stresses before ablation. Both deposition efficiency and gel stiffness increase in flow conditions nearing complete clogging.
more »
« less
In situ polymer gelation in confined flow controls intermittent dynamics
Polymer flows through pores, nozzles and other small channels govern engineered and naturally occurring dynamics in many processes, from 3D printing to oil recovery in the earth's subsurface to a wide variety of biological flows. The crosslinking of polymers can change their material properties dramatically, and it is advantageous to know a priori whether or not crosslinking polymers will lead to clogged channels or cessation of flow. In this study, we investigate the flow of a common biopolymer, alginate, while it undergoes crosslinking by the addition of a crosslinker, calcium, driven through a microfluidic channel at constant flow rate. We map the boundaries defining complete clogging and flow as a function of flow rate, polymer concentration, and crosslinker concentration. Interestingly, the boundaries of the dynamic behavior qualitatively match the thermodynamic jamming phase diagram of attractive colloidal particles. That is, polymer clogging occurs in a region analogous to colloids in a jammed state, while the polymer flows in regions corresponding to colloids in a liquid phase. However, between the dynamic regimes of complete clogging and unrestricted flow, we observe a remarkable phenomenon in which the crosslinked polymer intermittently clogs the channel. This pattern of deposition and removal of a crosslinked gel is simultaneously highly reproducible, long-lasting, and controllable by system parameters. Higher concentrations of polymer and cross-linker result in more frequent ablation, while gels formed at lower component concentrations ablate less frequently. Upon ablation, the eluted gel maintains its shape, resulting in micro-rods several hundred microns long. Our results suggest both rich dynamics of intermittent flows in crosslinking polymers and the ability to control them.
more »
« less
- Award ID(s):
- 2239742
- PAR ID:
- 10503842
- Editor(s):
- Professor Ewa Gorecka, Associate Editor
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 8
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 1858 to 1868
- Subject(s) / Keyword(s):
- alginate hydrogels crosslinking polymers gelation in flow microfluidics deposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Crosslinking is a ubiquitous strategy in polymer engineering to increase the thermomechanical robustness of solid polymers but has been relatively unexplored in the context of π‐conjugated (semiconducting) polymers. Notwithstanding, mechanical stability is key to many envisioned applications of organic electronic devices. For example, the wide‐scale distribution of photovoltaic devices incorporating conjugated polymers may depend on integration with substrates subject to mechanical insult—for example, road surfaces, flooring tiles, and vehicle paint. Here, a four‐armed azide‐based crosslinker (“4Bx”) is used to modify the mechanical properties of a library of semiconducting polymers. Three polymers used in bulk heterojunction solar cells (donors J51 and PTB7‐Th, and acceptor N2200) are selected for detailed investigation. In doing so, it is shown that low loadings of 4Bx can be used to increase the strength (up to 30%), toughness (up to 75%), hardness (up to 25%), and cohesion of crosslinked films. Likewise, crosslinked films show greater physical stability in comparison to non‐crosslinked counterparts (20% vs 90% volume lost after sonication). Finally, the locked‐in morphologies and increased mechanical robustness enable crosslinked solar cells to have greater survivability to four degradation tests: abrasion (using a sponge), direct exposure to chloroform, thermal aging, and accelerated degradation (heat, moisture, and oxygen).more » « less
-
Polymer blends offer a cost-effective way to create new materials with enhanced properties. However, blending different polymers often results in phase separation with weak interfacial adhesion, leading to inferior mechanical properties. Given that high-density polyethylene (HDPE) and isotactic polypropylene (iPP) are the largest volume polymers, there is significant interest in developing blends of these materials. Applying a singlet nitrene-facilitated dynamic crosslinking method recently developed in our lab, in this study we prepared a series of HDPE/iPP blends across a range of compositions with enhanced compatibility and tunable thermomechanical properties. By incorporating a small amount of a dynamic crosslinker featuring a siloxane core and bis-aromatic sulfonyl azides (bis-ASA) into varying compositions of HDPE and iPP, we achieve significant improvements in the compatibility. AFM and SEM imaging analyses reveal that the compatibilized blends exhibit superior homogeneity compared to control blends. Additionally, these blends show significant improvements in elongation at break, toughness, and oxidative stability. The dynamic crosslinking further enhances the blends’ creep resistance while retains reprocessability, paving the way for the development of tailorable polymer blends for various applications.more » « less
-
Nitrate contamination of ground water is a serious problem due to the intensive agricultural activities needed to feed the world’s growing population. While effective, drinking water treatment using commercial ion exchange polymers is often too expensive to be employed. At the same time, lignocellulosic waste from crop production—an abundant source of the renewable polymer cellulose—is often burned to clear fields. This results in not only adverse health outcomes, but also wastes a valuable resource. In this study, wheat straw was pretreated to extract cellulose, then selectively oxidized with periodate, crosslinked with an alkyl diamine (1,7-diaminoheptane or 1,10-diaminodecane), and functionalized with a quaternary ammonium compound ((2-aminoethyl)trimethyl ammonium chloride) to generate a cellulose-based anion exchange polymer. This polymer lowered aqueous nitrate concentrations to health-based drinking water standards. Unlike commercial ion exchange polymers, its synthesis did not require the use of toxic epichlorohydrin or flammable solvents. The pretreatment conditions did not significantly affect nitrate uptake, but the crosslinker chain length did, with polymers crosslinked with 1,10-diaminodecane showing no nitrate uptake. Agricultural-waste-based anion exchange polymers could accelerate progress toward the sustainable development goals by providing low-cost materials for nitrate removal from water.more » « less
-
Abstract Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.more » « less
An official website of the United States government

