skip to main content


Title: H 2 SO 4 and particle production in a photolytic flow reactor: chemical modeling, cluster thermodynamics and contamination issues
Abstract. Size distributions of particles formed from sulfuric acid(H2SO4) and water vapor in a photolytic flow reactor (PhoFR) weremeasured with a nanoparticle mobility sizing system. Experiments with addedammonia and dimethylamine were also performed. H2SO4(g) wassynthesized from HONO, sulfur dioxide and water vapor, initiating OHoxidation by HONO photolysis. Experiments were performed at 296 K over arange of sulfuric acid production levels and for 16 % to 82 % relativehumidity. Measured distributions generally had a large-particle mode thatwas roughly lognormal; mean diameters ranged from 3 to 12 nm and widths(lnσ) were ∼0.3. Particle formation conditions werestable over many months. Addition of single-digit pmol mol−1 mixing ratios ofdimethylamine led to very large increases in particle number density.Particles produced with ammonia, even at 2000 pmol mol−1, showed that NH3is a much less effective nucleator than dimethylamine. A two-dimensionalsimulation of particle formation in PhoFR is also presented that starts withgas-phase photolytic production of H2SO4, followed by kineticformation of molecular clusters and their decomposition, which is determined by theirthermodynamics. Comparisons with model predictions of the experimentalresult's dependency on HONO and water vapor concentrations yieldphenomenological cluster thermodynamics and help delineate the effects ofpotential contaminants. The added-base simulations and experimental resultsprovide support for previously published dimethylamine–H2SO4cluster thermodynamics and provide a phenomenological set ofammonia–sulfuric acid thermodynamics.  more » « less
Award ID(s):
1761638
NSF-PAR ID:
10143283
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
14
ISSN:
1680-7324
Page Range / eLocation ID:
8999 to 9015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Nucleation rates involving sulfuric acid and watermeasured in a photolytic flow reactor have decreased considerably over atime period of several years. Results show that the system – flow reactor,gas supplies and lines, flow meters, valves, H2SO4 photo-oxidantsources – has reached a baseline stability that yields nucleationinformation such as cluster free energies. The baseline nucleation rate ispunctuated by temporary bursts that in many instances are linked to cylinderchanges, delineating this source of potential contaminants. Diagnostics wereperformed to better understand the system, including growth studies to assessH2SO4 levels, chemiluminescent NO and NOx detection toassess the HONO source, and deployment of a second particle detector toassess the nanoparticle detection system. The growth of seed particles showstrends consistent with the sizes of nucleated particles and provides ananchor for calculated H2SO4 concentrations. The chemiluminescentdetector revealed that small amounts of NO are present in the HONO source,∼ 10 % of HONO. The second condensation-type particlecounter indicates that the nanoparticle mobility sizing system has a bias atlow sulfuric acid levels. The measured and modeled nucleation ratesrepresent upper limits to nucleation in the binary homogeneous system,H2SO4-H2O, as contaminants might act to enhance nucleationrates and ion-mediated nucleation may contribute. Nonetheless, theexperimental nucleation rates, which have decreased by an order of magnitudeor larger since our first publication, extrapolate to some of the lowest ratesreported in experiments with photolytic H2SO4. Results fromexperiments with varying water content and with ammonia addition are alsopresented and have also decreased by an order of magnitude from our previouswork; revised energetics of clusters in this three-component system arederived which differ from our previous energetics mainly in the five-acid andlarger clusters. 
    more » « less
  2. Abstract

    Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

     
    more » « less
  3. The effect of precursor molecular structural features on secondary organic aerosol (SOA) growth was investigated for a number of precursor functional groups. SOA yields were determined for straight chain alkanes, some oxygenated, up to highly functionalized hydrocarbons, the largest being β-caryophyllene. Organic SOA yield was determined by comparing to standard particle size changes with SO 2 in a photolytic flow reactor. SOA formation was initiated with OH radicals from HONO photolysis and continued with NO and NO 2 present at single-digit nmol/mol levels. Seed particles of ∼10 nm diameter grew by condensation of SOA material and growth was monitored with a nanoparticle sizing system. Cyclic compounds dominate as the highest SOA yielding structural feature, followed by C-10 species with double bonds, with linear alkanes and isoprene most ineffective. Carbonyls led to significant increases in growth compared to the alkanes while alcohols, triple-bond compounds, aromatics, and epoxides were only slightly more effective than alkanes at producing SOA. When more than one double bond is present, or a double bond is present with another functional group as seen with 1, 2-epoxydec-9-ene, SOA yield is notably increased. Placement of the double bond is important as well with β-pinene having an SOA yield approximately 5 times that of α-pinene. In our photolytic flow reactor, first-generation oxidation products are presumed to be the primary species contributing to SOA thus the molecular structure of the precursor is determinant. We also conducted proton-transfer mass spectrometry measurements of α-pinene photooxidation and significant signals were observed at masses for multifunctional nitrates and possibly peroxy radicals. The mass spectrometer measurements were also used to estimate a HONO photolysis rate. 
    more » « less
  4. In the atmosphere, water in all phases is ubiquitous and plays important roles in catalyzing atmospheric chemical reactions, participating in cluster formation and affecting the composition of aerosol particles. Direct measurements of water-containing clusters are limited because water is likely to evaporate before detection, and therefore, theoretical tools are needed to study hydration in the atmosphere. We have studied thermodynamics and population dynamics of the hydration of different atmospherically relevant base monomers as well as sulfuric acid–base pairs. The hydration ability of a base seems to follow in the order of gas-phase base strength whereas hydration ability of acid–base pairs, and thus clusters, is related to the number of hydrogen binding sites. Proton transfer reactions at water–air interfaces are important in many environmental and biological systems, but a deeper understanding of their mechanisms remain elusive. By studying thermodynamics of proton transfer reactions in clusters containing up to 20 water molecules and a base molecule, we found that that the ability of a base to accept a proton in a water cluster is related to the aqueous-phase basicity. We also studied the second deprotonation reaction of a sulfuric acid in hydrated acid–base clusters and found that sulfate formation is most favorable in the presence of dimethylamine. Molecular properties related to the proton transfer ability in water clusters are discussed. 
    more » « less
  5. null (Ed.)
    Abstract. Acid–base clusters and stable salt formation are critical drivers of new particle formation events in the atmosphere. In this study, we explore salt heterodimer (a cluster of one acid and one base) stability as a function of gas-phase acidity, aqueous-phase acidity, heterodimer proton transference, vapor pressure, dipole moment and polarizability for salts comprised of sulfuric acid, methanesulfonic acid and nitric acid with nine bases. The best predictor of heterodimer stability was found to be gas-phase acidity. We then analyzed the relationship between heterodimer stability and J4×4, the theoretically predicted formation rate of a four-acid, four-base cluster, for sulfuric acid salts over a range of monomer concentrations from 105 to 109 molec cm−3 and temperatures from 248 to 348 K and found that heterodimer stability forms a lognormal relationship with J4×4. However, temperature and concentration effects made it difficult to form a predictive expression of J4×4. In order to reduce those effects, heterodimer concentration was calculated from heterodimer stability and yielded an expression for predicting J4×4 for any salt, given approximately equal acid and base monomer concentrations and knowledge of monomer concentration and temperature. This parameterization was tested for the sulfuric acid–ammonia system by comparing the predicted values to experimental data and was found to be accurate within 2 orders of magnitude. We show that one can create a simple parameterization that incorporates the dependence on temperature and monomer concentration on J4×4 by defining a new term that we call the normalized heterodimer concentration, Φ. A plot of J4×4 vs. Φ collapses to a single monotonic curve for weak sulfate salts (difference in gas-phase acidity >95 kcal mol−1) and can be used to accurately estimate J4×4 within 2 orders of magnitude in atmospheric models. 
    more » « less