skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The missing base molecules in atmospheric acid–base nucleation
Abstract Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.  more » « less
Award ID(s):
2132089
PAR ID:
10372430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
National Science Review
Volume:
9
Issue:
10
ISSN:
2095-5138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The energy landscape is changing worldwide, with a drastic reduction in sulfur dioxide (precursor to sulfuric acid, H2SO4) emitted from fossil fuel combustion. As a result, acid-base chemistry leading to new particle formation (NPF) from sulfuric acid is decreasing. At the same time, photooxidation of biogenic organosulfur compounds leading to the formation of H2SO4 and methanesulfonic acid (MSA) is expected to become more important. Aqueous solutions of alkanolamines have been proposed as carbon capture technology media to store carbon dioxide from stack plumes before release into the atmosphere. It is therefore expected that some of the alkanolamines will be released, making it critical to understand their atmospheric fates including their role in new particle formation and growth. We expanded our experimental studies of nucleation from the reaction of MSA with simple amines to the multifunctional alkanolamines, including mononethanolamine (HO(CH2)2NH2; MEA) and 4-aminobutanol (HO(CH2)4NH2; 4AB). Experiments were performed in a 1-m borosilicate flow reactor under dry conditions as well as in presence of water. These two systems were shown to produce sub-10 nm particles with MSA extremely efficiently. Surprisingly, the presence of water did not enhance NPF, in contrast to the drastic effect water had on small alkylamine reactions with MSA. This is likely due to the fact that MEA and 4AB have an -OH group that provides additional H-bond interactions within the cluster. Sampling of the chemical composition of these small nanoparticles with high resolution and high transmission was possible down to 3-4 nm using a novel high-flow differential mobility analyzer (half-mini DMA) interfaced to a thermal chemical ionization mass spectrometer (TDCIMS). There was no size dependence for the acid-to-base molar ratio (1:1) for either amine. Integration of these data with preliminary results obtained for a simple C4 alkylamine (butylamine) and a C4 diamine (putrescine) will be discussed in the context of developing a molecular structure-reactivity scheme for new particle formation from MSA and amines of varying structures. 
    more » « less
  2. (1) Introduction. Although new particle formation (NPF) constitutes an important process in air, there are large uncertainties regarding which species participate in the formation of the first nanoclusters. Acid-base reactions are known generate new particles, with methanesulfonic acid (MSA) from the photooxidation of biogenic organosulfur compounds becoming more important with time relative to sulfuric acid as fossil-fuel related sources of the latter decline. Simultaneously, the use of alkanolamines in carbon capture and storage (CCS) is expected to result in increased atmospheric concentrations of these bases. This study applied a unique mass spectrometry method to examine the chemical composition of 2-10 nm particles from the MSA reaction with monoethanolamine and 4-aminobutanol, the most efficient system for NPF from MSA examined to date. (2) Methods. Thermal desorption chemical ionization mass spectrometry (TDCIMS, HToF mass analyzer, Tofwerk AG) was used to measure the size and acid-to-base molar ratios of nanoparticles formed from the reaction of MSA with multifunctional amines. A high-flow differential mobility analyzer (half-mini DMA, SEADM) was interfaced with the TDCIMS, which provides a high mobility resolution and high particle transmission in the diameter range 2-10 nm, where chemical composition measurements are the most challenging due to the very small amount of mass. With this novel combination of techniques we were able to examine MSA-amine systems either from nanoparticles exiting the outlet of a flow reactor or nanoclusters generated via electrospray. (3) Preliminary Data. These experiments show that MSA-driven acid-base reactions with monethanolamine or 4-aminobutanol are even more efficient in NPF than that of simple alkylamines, exhibiting to date the highest nanoparticle formation rates measured in laboratory flow tube studies. The observed enhancement is rooted in the presence of an -OH group on the parent molecules, which initiates a H-bond network throughout the nanoclusters. In these systems, water had only a minimal enhancing effect. We demonstrated that the nanoparticles formed in both systems are neutral (i.e. contain as much acid as base molecules) in the range 2-10 nm. This contrasts with MSA reactions from previous studies on the smallest alkylamine, methylamine, where particles smaller than 9 nm were more acidic. Investigations of reactions of MSA with a diamine (1,4-diaminobutane) showed a similar pattern of neutral particles across the diameter range studied and experiments with larger alkylamine, butylamine, are underway to probe the relationship between structure- and NPF potential from MSA. These findings highlight that there is no “one size-fits-all” regarding NPF from MSA reactions with amines and illustrates the need for studies of more complex amines to fully characterize the NPF potential of this atmospherically relevant strong acid. (4) Novel Aspect. The combination of TDCIMS with a novel particle sizing system provided the chemical composition of 2-10 nm particles. 
    more » « less
  3. Abstract As one of the least understood aerosol processes, nucleation can be a dominant source of atmospheric aerosols. Sulfuric acid (SA)-amine binary nucleation with dimethylamine (DMA) has been recognized as a governing mechanism in the polluted continental boundary layer. Here we demonstrate the importance of trimethylamine (TMA) for nucleation in the complex atmosphere and propose a molecular-level SA-DMA-TMA ternary nucleation mechanism as an improvement upon the conventional binary mechanism. Using the proposed mechanism, we could connect the gaseous amines to the SA-amine cluster signals measured in the atmosphere of urban Beijing. Results show that TMA can accelerate the SA-DMA-based new particle formation in Beijing by 50–100%. Considering the global abundance of TMA and DMA, our findings imply comparable importance of TMA and DMA to nucleation in the polluted continental boundary layer, with probably higher contributions from TMA in polluted rural environments and future urban environments with controlled DMA emissions. 
    more » « less
  4. While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level. A simple model system for understanding the interactions between the gas and particle phases is the reaction of bases with acids, both of which are common constituents of atmospheric particles. In the present study, uptake coefficients for the reactions of gas phase ammonia, methylamine, ethylamine, dimethylamine and trimethylamine with a series of solid dicarboxylic acids (diacids) were measured at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. The uptake coefficients ( γ ) for a given amine follow an odd–even trend in carbon number of the diacid, and are larger for the odd carbon diacids. Values range from γ = 0.4 for ethylamine on malonic acid (C3) to less than ∼10 −6 for ammonia and all amines on adipic (C6) and pimelic (C7) acids. Basicity or structure of the amines/ammonia alone do not explain the effect of the base on uptake. The crystal structures of the diacids also play a key role, which is especially evident for malonic acid (C3). Evaporation of aqueous mixtures of amines/ammonia with odd carbon diacids show the formation of ionic liquids (ILs) or in some cases, metastable ILs that revert back to a stable solid salt upon complete evaporation of water. The trends with amine and diacid structure provide insight into the mechanisms of uptake and molecular interactions that control it, including the formation of ionic liquid layers in some cases. The diversity in the kinetics and mechanisms involved in this relatively simple model system illustrate the challenges in accurately representing such processes in atmospheric models. 
    more » « less
  5. null (Ed.)
    Abstract. Nucleation rates involving sulfuric acid and watermeasured in a photolytic flow reactor have decreased considerably over atime period of several years. Results show that the system – flow reactor,gas supplies and lines, flow meters, valves, H2SO4 photo-oxidantsources – has reached a baseline stability that yields nucleationinformation such as cluster free energies. The baseline nucleation rate ispunctuated by temporary bursts that in many instances are linked to cylinderchanges, delineating this source of potential contaminants. Diagnostics wereperformed to better understand the system, including growth studies to assessH2SO4 levels, chemiluminescent NO and NOx detection toassess the HONO source, and deployment of a second particle detector toassess the nanoparticle detection system. The growth of seed particles showstrends consistent with the sizes of nucleated particles and provides ananchor for calculated H2SO4 concentrations. The chemiluminescentdetector revealed that small amounts of NO are present in the HONO source,∼ 10 % of HONO. The second condensation-type particlecounter indicates that the nanoparticle mobility sizing system has a bias atlow sulfuric acid levels. The measured and modeled nucleation ratesrepresent upper limits to nucleation in the binary homogeneous system,H2SO4-H2O, as contaminants might act to enhance nucleationrates and ion-mediated nucleation may contribute. Nonetheless, theexperimental nucleation rates, which have decreased by an order of magnitudeor larger since our first publication, extrapolate to some of the lowest ratesreported in experiments with photolytic H2SO4. Results fromexperiments with varying water content and with ammonia addition are alsopresented and have also decreased by an order of magnitude from our previouswork; revised energetics of clusters in this three-component system arederived which differ from our previous energetics mainly in the five-acid andlarger clusters. 
    more » « less