This release (MAGs v2) is a major new version of this metagenome-assembled genome (MAG) set. All previous releases on this page (which only differ in the metadata) are designated "MAGs v1." The current release (MAGs v2) uses CheckM2 v1.0.2 filtering (≥70% completeness, ≤10% contamination) to expand this dataset to include 36,419 MAGs, with the following subcategories: Cronin_v1:  Manually-curated subset of the "Field" category from MAGs v1. Cronin_v2:  MAGs from raw bin filtering on the same assemblies used to generate Cronin_v1. Woodcroft_v2:  MAGs from raw bin filtering on the same assemblies used to generate the MAGs reported in Woodcroft & Singleton et al. (2018). SIPS:  Updated genomes from samples originating from a stable isotope probing (SIP) incubation experiment by Moira Hough et al. ("SIP" in MAGs v1), re-analyzed due to read truncation and sample linkage issues in MAGs v1. JGI:  Expanded set of genomes from the Joint Genome Institute's metagenome annotation pipeline.   FILES: Emerge_MAGs_v2.tar.gz - Archive containing the MAG files (.fna). metadata_MAGs_v2_EMERGE.tsv - Table containing source sample names and accessions, GTDB taxonomy information, CheckM2 quality reports, NCBI GenomeBatch- and MIMAG(6.0)-formatted sample attributes and other metadata for the MAGs.    FUNDING: This research is a contribution of the EMERGE Biology Integration Institute (https://emerge-bii.github.io/), funded by the National Science Foundation, Biology Integration Institutes Program, Award # 2022070. This study was also funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grant #s DE-SC0004632. DE-SC0010580. and DE-SC0016440. We thank the Swedish Polar Research Secretariat and SITES for the support of the work done at the Abisko Scientific Research Station. SITES is supported by the Swedish Research Council's grant 4.3-2021-00164. Data collected at the Joint Genome Institute was generated under the following awards: The majority of sequencing at JGI was supported by BER Support Science Proposal 503530 (DOI: 10.46936/10.25585/60001148), conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Sequencing of SIP samples was performed under the Facilities Integrating Collaborations for User Science (FICUS) initiative (proposal 503547; award DOI: 10.46936/fics.proj.2017.49950/60006215) and used resources at the DOE Joint Genome Institute (https://ror.org/04xm1d337) and the Environmental Molecular Sciences Laboratory (https://ror.org/04rc0xn13), which are DOE Office of Science User Facilities. Both facilities are sponsored by the Office of Biological and Environmental Research and operated under Contract Nos. DE-AC02-05CH11231 (JGI) and DE-AC05-76RL01830 (EMSL). 
                        more » 
                        « less   
                    
                            
                            Electric Field-Induced Metal-to-Insulator Phase Transition in Few-Layered MoSe2
                        
                    
    
            The Metal-Insulator phase transition (MIT) is one of the most interesting phenomena to study particularly in two-dimensional transition-metal dichalcogendes (TMDCs). A few recent studies1,2 have indicated a possible MIT on MoS2 and ReS2, but the nature of the MIT is still enigmatic due to the interplay between charge carriers and disorder in 2D systems. We will present a potential MIT in few-layered MoSe2 FETs based on four-terminal conductivity measurements. Conductivities measured in multiple samples strongly demonstrate the insulating-to-metallic-like phase transition when the charge carrier density increased above a critical threshold. The nature of the phase transition will be discussed with an existing theoretical model. 1B. H. Moon et al, Nat Commun. 2018; 9: 2052. 2N. R. Pradhan et al, Nano Lett. 2015, 15, 12, 8377 *This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. This work is also supported by NSF-DMR #1826886 and # 1900692. A portion of this work was performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1644779 and the State of Florida 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900692
- PAR ID:
- 10143374
- Date Published:
- Journal Name:
- Bulletin of the American Physical Society
- Volume:
- 65
- Issue:
- 1
- ISSN:
- 0003-0503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to a wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In 2 O 3 -based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable and high TFT performance[3, 4], identified vacancy-based native defect doping mechanisms[5], suggested interfacial buffer layers to promote charge injection capability[6], and established the role of third cation species on the carrier generation and carrier transport[7]. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target[8]. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide-based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 10 3 at ±3 V, a low saturation current of ~2x10 -10 , and a small turn-on voltage of -0.5 V. In this presentation, we review recent achievements and still remaining issues in transition metal oxide semiconductors and their device applications, in particular, bipolar applications including p-n heterostructures and complementary metal-oxide-semiconductor devices as well as single polarity devices such as TFTs and memristors. In addition, the fundamental mechanisms of carrier transport behaviors and doping mechanisms that govern the performance of these oxide-based devices will also be discussed. ACKNOWLEDGMENT This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education. REFERENCES [1] K. Nomura et al. , Nature, vol. 432, no. 7016, pp. 488-492, Nov 25 2004. [2] D. C. Paine et al. , Thin Solid Films, vol. 516, no. 17, pp. 5894-5898, Jul 1 2008. [3] S. Lee et al. , Journal of Applied Physics, vol. 109, no. 6, p. 063702, Mar 15 2011, Art. no. 063702. [4] S. Lee et al. , Applied Physics Letters, vol. 104, no. 25, p. 252103, 2014. [5] S. Lee et al. , Applied Physics Letters, vol. 102, no. 5, p. 052101, Feb 4 2013, Art. no. 052101. [6] M. Liu et al. , ACS Applied Electronic Materials, vol. 3, no. 6, pp. 2703-2711, 2021/06/22 2021. [7] A. Reed et al. , Journal of Materials Chemistry C, 10.1039/D0TC02655G vol. 8, no. 39, pp. 13798-13810, 2020. [8] D. H. Lee et al. , ACS Applied Materials & Interfaces, vol. 13, no. 46, pp. 55676-55686, 2021/11/24 2021.more » « less
- 
            Liwendowski, H. (Ed.)The electrons and atoms inside molecules can rearrange rapidly during photoexcitation or collisions, moving angstroms in a few femtoseconds or less. This non-classical many-body quantum evolution is far too small and too fast to be resolved in any imaging microscope, but if we could film it, what should we expect to see? New tools based on ultrafast lasers, electron accelerators, and x-ray free-electron lasers have now begun to record this motion with increasing detail, and for a growing array of atomic and molecular systems. Here I will attempt to answer the question, "So what?" What have we learned, and how are molecular movies guiding us toward future discoveries in AMO physics? *Much of this work is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division (CSGB). Other work described here has been supported by the National Science Foundationmore » « less
- 
            This is a pre-release of this MAG set, which is now published in ENA under BioProject PRJNA386568.FILES: mags_emerge_20230110.tar.gz - Archive containing MAG files (.fna). metadata_MAGs_EMERGE.tsv - Table containing MIMAG(5.0)-formatted sample attributes, genome information, and other metadata for the MAGs. This table also includes JGI or NCBI genome accession #s for some additional MAGs that are not part of the .tar.gz archive. NEW in Version 1.0.0: Added source metagenome accessions, including SRA runs (derived_from) and BioSamples (metaG_biosample), for all MAGs where this info was available. Added other metadata (including SampleID__, assembly methods, and sequencing technology) that was previously absent for the externally-cited MAGs. FUNDING: This research is a contribution of the EMERGE Biology Integration Institute (https://emerge-bii.github.io/), funded by the National Science Foundation, Biology Integration Institutes Program, Award # 2022070. This study was also funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grant #s DE-SC0004632. DE-SC0010580. and DE-SC0016440. We thank the Swedish Polar Research Secretariat and SITES for the support of the work done at the Abisko Scientific Research Station. SITES is supported by the Swedish Research Council's grant 4.3-2021-00164. Data collected at the Joint Genome Institute was generated under the following awards: The majority of sequencing at JGI was supported by BER Support Science Proposal 503530 (DOI: 10.46936/10.25585/60001148), conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Sequencing of SIP samples was performed under the Facilities Integrating Collaborations for User Science (FICUS) initiative (proposal 503547; award DOI: 10.46936/fics.proj.2017.49950/60006215) and used resources at the DOE Joint Genome Institute (https://ror.org/04xm1d337) and the Environmental Molecular Sciences Laboratory (https://ror.org/04rc0xn13), which are DOE Office of Science User Facilities. Both facilities are sponsored by the Office of Biological and Environmental Research and operated under Contract Nos. DE-AC02-05CH11231 (JGI) and DE-AC05-76RL01830 (EMSL).more » « less
- 
            METHODS: Soil samples (6 total) were collected at the Stordalen Mire site in 2019 from two depths (1-5 & 20-24 cm below ground) across three habitats (Palsa, Bog, and Fen). DNA was extracted based on the protocol described by Li et al. (2024). For short reads, libraries were prepared at the Joint Genome Institute (JGI) with the KAPA Hyperprep kit, and sequenced with Illumina NovaSeq 6000. For long reads, libraries were prepared with the SMRTbell Express Template Prep Kit 2.0 (PacBio), then sequenced using PacBio Sequel IIe at JGI. PacBio data was processed at JGI to form filtered CCS (Circular Consensus Sequencing) reads. Assemblies were generated with short-only, long-only, and hybrid read sources: Short-only was assembled with metaSPAdes (v3.15.4) using Aviary (v0.5.3) with default parameters. Long-only was assembled with metaFlye (v2.9-b1768) using Aviary (v0.5.3) with default parameters. Hybrid assembly was performed using Aviary v0.5.3 with default parameters. This involved a step-down procedure with long-read assembly through metaFlye (v2.9-b1768), followed by short-read polishing by Racon (v1.4.3), Pilon (v1.24) and then Racon again. Next, reads that didn't map to high-quality metaFlye contigs were hybrid assembled with SPAdes (--meta option) and binned out with MetaBAT2 (v2.1.5). For each bin, the reads within the bin were hybrid assembled using Unicycler (v0.4.8). The high-coverage metaFlye contigs and Unicycler contigs were then combined to form the assembly fasta file. Genome recovery was performed using Aviary v0.5.3 with samples chosen for differential abundance binning by Bin Chicken (v0.4.2) using SingleM metapackage S3.0.5. This involved initial read mapping through CoverM (v0.6.1) using minimap2 (v2.18) and binning by MetaBAT, MetaBAT2 (v2.1.5), VAMB (v3.0.2), SemiBin (v1.3.1), Rosella (v0.4.2), CONCOCT (v1.1.0) and MaxBin2 (v2.2.7). Genomes were analyzed using CheckM2 (v1.0.2) and clustered at 95% ANI using Galah (v0.4.0). FILES: EMERGE_MAGs_2019_long-short-hybrid.tar.gz - Archive containing the MAG files (.fna). metadata_MAGs_2019_EMERGE.tsv - Table containing source sample names and accessions, GTDB classifications, CheckM2 quality information, NCBI GenomeBatch- and MIMAG(6.0)-formatted attributes, and other metadata for the MAGs. FUNDING: This research is a contribution of the EMERGE Biology Integration Institute (https://emerge-bii.github.io/), funded by the National Science Foundation, Biology Integration Institutes Program, Award # 2022070. This study was also funded by the Genomic Science Program of the United States Department of Energy Office of Biological and Environmental Research, grant #s DE-SC0004632. DE-SC0010580. and DE-SC0016440. We thank the Swedish Polar Research Secretariat and SITES for the support of the work done at the Abisko Scientific Research Station. SITES is supported by the Swedish Research Council's grant 4.3-2021-00164. Data from the Joint Genome Institute (JGI) was collected under BER Support Science Proposal 503530 (DOI: 10.46936/10.25585/60001148), conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    