skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900692

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvailableThe demand for energy storage devices with high energy density, power density, and higher efficiencies has motivated researchers to explore novel materials and designs beyond current limitations. Polymer-based dielectric capacitors are flexible, lightweight, self-healable, and compatible with a variety of nanofillers. Despite a plethora of studies on polymer nanocomposites with 2D nanofillers, the role of multilayered 2D nanofillers in polymer nanocomposites in the context of energy storage properties has yet to be determined. In this work, mechanically exfoliated 2D mica nanofillers were incorporated with poly(vinylidene fluoride) (PVDF) polymer to fabricate PVDF-mica-PVDF (PMP) multilayered heterostructure capacitors. A single exfoliated layer of mica with an average thickness of the flakes of 20 nm interfaced within layers of PVDF to form PMP and using two layers of mica to form PVDF/mica/PVDF/mica/PVDF (PMPMP) heterostructure capacitors. Average enhancements of 100% and 170% were measured for the dielectric constants of PMP (εav ∼ 22.9) and PMPMP (εav ∼ 30.8), respectively compared to that of the pristine PVDF (εav ∼ 11.4) films measured using the same setup. The highest discharged energy density of PMP and PMPMP nanocomposite films reached 27.5 J/cm3 (E = 670 MV/m) and 44 J/cm3 (E = 570 MV/m), compared to 11.2 J/cm3 (E = 396 MV/m) for the pristine PVDF capacitor. This work develops a detailed understanding of the use of multilayered 2D nanofillers to develop high-capacitance and high energy density polymeric dielectric capacitors and opens avenues for developing orientation-controlled 2D nanofiller-based capacitors for use in industrial applications. 
    more » « less
  2. Hagfeldt, Anders (Ed.)
    Supercapacitors are widely recognized as a favorable option for energy storage due to their higher power density compared to batteries, despite their lower energy density. However, to meet the growing demand for increased energy capacity, it is crucial to explore innovative materials that can enhance energy storage efficiency. Recent research has focused on investigating various electrode materials for use in supercapacitors, with particular attention given to MXenes. MXenes exhibit immense potential for energy storage due to their unique characteristics, including a 2D van der Waals layered structure, small band gaps, hydrophilic surface, excellent electrical conductivity, high specific surface area, and active redox sites on the surface facilitated by transition metals. These attributes collectively contribute to their promising stability, energy and power density, and overall lifespan. This comprehensive review explores a diverse array of topics pertaining to the latest 2D MXene-based supercapacitor electrodes. It encompasses discussions on different synthesis methods, electrode structures, the underlying working mechanisms, and the impact of electrolytes on supercapacitor performance. Additionally, a concise overview of various types of MXene materials is presented, ranging from titanium-based MXenes to niobium-based MXenes, vanadium-based MXenes, molybdenum-based MXenes, and tantalum-based MXenes. Furthermore, this review focuses on electronic structure engineering strategies such as heterostructures based on MXenes, heteroatom-doping based on MXenes, polymer based MXenes, and ternary composites based on MXenes, all of which contribute to improving the electrochemical performance of supercapacitors. The review thoroughly examines the advantages and disadvantages of MXene-based supercapacitor electrodes, offering a comprehensive understanding of their strengths and limitations. Additionally, it discusses the structural stability of MXene-based electrodes after electrochemical testing, as well as their applications in daily human life, particularly focusing on the uses of MXene-based flexible wearable energy storage for real-world applications. In the end, the challenges and prospects of MXenes in supercapacitors are discussed. 
    more » « less
  3. High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented. 
    more » « less
  4. null (Ed.)
    Recently, the developments of two-dimensional (2D) ferroelectrics and multiferroics have attracted much more attention among researchers. These materials are useful for high-density devices for multifunctional applications such as sensors, transducers, actuators, non-volatile memories, photovoltaic, and FETs. Although several theoretical works have been reported on layered ferroelectrics, experimental work is still lacking in single to few-atomic layers of 2D ferroelectric materials. In this review, we have discussed the recent theoretical as well as experimental progress of 2D ferroelectric and multiferroic materials. The emphasis is given to the development of single to few-atomic layers of 2D ferroelectric materials. In this regard, the recent developments of 2D ferroelectric polarization on vanadium oxyhalides VOX2 (X=I, Br, Cl, and F), distorted phase d1-MoTe2, In2Se3, and SnSe are discussed. d1-MoTe2 shows Curie temperature (TC) above room temperature, while few-layered In2Se3 shows in-plane ferroelectricity and interesting domain wall dynamics in a single atomic layer of SnSe. This follows the discussion of multiferroic materials based on transition metal oxyiodide MOI2 (M=Ti, V, and Cr), double perovskite bilayer, and iron-doped In2Se3. While pristine In2Se3 shows ferroelectric properties, iron-doped In2Se3 shows multiferroicity. Finally, the potential applications of 2D ferroelectrics and multiferroics have been discussed that follow the challenges and opportunities in this field, which can guide the research community to develop next-generation 2D ferroelectric and multiferroic materials with interesting properties. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented. 
    more » « less
  7. null (Ed.)
  8. We report intrinsic photoconductivity studies on one of the least examined layered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistors were fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurations under the illumination of 532 nm laser source. We measured photocurrent as a function of the incident optical power at several source-drain (bias) voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to that in the two-terminal configuration. For an incident optical power of 90 nW, the estimated photosensitivity and the external quantum efficiency (EQE) measured in two-terminal configuration are 0.5 A/W and 120%, respectively, under a bias voltage of 650 mV. Under the same conditions, the four-terminal measurements result in much higher values for both the photoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. This significant improvement in photoresponsivity and EQE   in the four-terminal configuration may have been influenced by the reduction of contact resistance at the metal-semiconductor interface, which greatly impacts the carrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configuration in previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides and their remarkable potential for optoelectronic applications. 
    more » « less