skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SEPs in RETs: Design and Development of an Observation Protocol
This study describes the design and development of an observation protocol for science and engineering practices (SEPs) experienced by teachers working in research laboratories under the auspices of Research Experiences for Teachers (RET). Development has proceeded iteratively through two-cycles of use and refinement based upon the observation of K-5 teachers working in engineering research laboratories as part of an NSF-funded RET site (EEC-1711543). This protocol offers the potential for looking inside the blackbox of apprenticed professional practice in the context of a research laboratory, which for K-12 teacher participants, has been previously only described through self-report. Data derived from this method, which can be viewed holistically or chronologically, can be used to triangulate and enhance other forms of data, for defining new processes or explaining outcomes and ultimately for enhancing programmatic functions.  more » « less
Award ID(s):
1711543
PAR ID:
10143576
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 ASTE International Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study advances our design and development goal of creating a valid and reliable observation protocol for science and engineering practices (SEPs) experienced by participants working in research laboratories under the auspices of RET. This protocol offers the potential for addressing persistent questions related to participant experience by looking inside the blackbox of apprenticed professional research practice. Framed by cognitive apprenticeship and situated in an engineering RET for K-5 teachers (EEC-1711543), we independently document the SEPs which were consistently experienced across contexts and thus define a generalized teacher experience. Further, we identify key associations among the teacher's perception of their work, an independent observation and that reported by their graduate student mentors. Findings indicate that perception of involvement with any particular practice and not actual experience was a more important predictor of confidence. Perhaps most striking was the negative relationship between teacher confidence when working with mentors (r=-.242), which is similarly described by the mentors for working with teachers (r=-.356). This implies a strong need for further work and support for helping these individuals to understand each other’s goals and perspectives and for finding a way to work together that generates mutual feelings of confidence and satisfaction. 
    more » « less
  2. This study advances our team’s overall design and development goal of creating a valid and reliable observation protocol for science and engineering practices (SEPs) experienced by teachers working in research laboratories under the auspices of Research Experience for Teachers (RET). This protocol offers the potential for addressing a wide range of persistent questions related to the experience of RET participants by looking inside the blackbox of apprenticed professional research practice. Framed by cognitive apprenticeship and situated in an engineering RET for K5 teachers, we independently document the SEPs that were consistently experienced across laboratory contexts and thus define a generalized teacher experience. Further, we identify key associations among the teacher's perception of their work, an independent observation of that activity and the perceptions reported by their graduate student mentors. Findings indicate that teacher participants’ perceptions of involvement and not actual experience was a more important predictor of confidence in practice. Perhaps most striking was the negative relationship between teacher confidence when working with mentors (r = -.242), which is similarly described by the mentors for working with teachers (r = -.356). This implies a strong need for further work and support for helping these unique individuals to understand each other’s goals and perspectives and for finding a way to work together that generates mutual feelings of confidence and satisfaction. 
    more » « less
  3. ABSTRACT Research Experiences for Teachers (RET) programs are a burgeoning approach to engage teachers in STEM (science, technology, engineering, mathematics) research that they can translate into their K‐12 classrooms. Despite an increase in studies of RETs, there is a need for comparison of RET and non‐RET teachers' student outcomes. This mixed methods, quasi‐experimental comparison study, using a revised third‐generation activity theory framework, investigates how an RET program for preservice and early career STEM teachers impacted participating teachers and their students up to 8 years after RET participation. Specifically, we conducted a matched comparison of student achievement data from students of nine RET teachers versus many non‐RET comparison teachers within the same districts (n = 830–1132 students). We also investigated student and teacher perceptions of classroom practices through surveys (n = 576 students) and interviews (15 teacher interviews). Omnibus tests revealed no statistically significant differences by treatment in math or science achievement. However, students of the RET teachers reported stronger perceptions of STEM career awareness, greater value for learning STEM subjects, and a greater propensity to persist in STEM course tasks (three of the five constructs measured). This was consistent with teacher interview responses in which RET teachers spoke about STEM career awareness in a broader context for understanding the value of STEM in society, and also discussed struggles in research and attempts to bring this mindset to their students, which may have resulted in greater student engagement in their courses. Implications for teacher education and for supporting science and engineering practices in STEM classrooms are discussed along with recommendations for further research on the impacts of RET programs guided by a revised third‐generation activity theory framework informed by this work. 
    more » « less
  4. Elementary school is the first opportunity most students have to learn about STEM; however, elementary teachers are sometimes the least confident and prepared to teach STEM concepts and practices. Research Experience for Teachers (RET) programs are an established form of K-12 teacher professional development in which teachers are invited to work as members of a laboratory research team to increase their enthusiasm, knowledge and experience in STEM fields. The Engineering for Biology: Multidisciplinary Research Experiences for Teachers (MRET) of Elementary Grades was a 7-week summer program in which teachers were embedded as contributing members of engineering laboratory research teams and was established with the goals of (1) increasing teacher knowledge of STEM concepts and practices, (2) fostering mentoring relationships among researchers and teachers in each laboratory, and (3) guiding the translation of the teachers’ laboratory experience into the classroom through the development of STEM learning units. This exploratory study focuses on the second goal, and involves the use of developmental network theory to discriminate mentoring among participants within the summer 2017 and 2018 cycles of MRET. Using data collected in daily observations as well as daily activity and conversation logs submitted by all participants during the lab experience, post participation surveys, and post program semi structured interviews, we have characterized a network of mentoring that existed within the lab portion of MRET as being multidirectional and potentially beneficial to all members, including researchers as well as teachers. This finding challenges the currently accepted assumption that teachers are the primary beneficiaries of mentoring within RET programs. If demonstrated to be appropriate and transferrable to the RET context, such a perspective could enhance our understanding of the experience and be used for maximizing the outcomes for all participants. 
    more » « less
  5. This WIP presentation is intended to share and gather feedback on the development of an observation protocol for K-12 integrated STEM instruction, the STEM-OP. Specifically, the STEM-OP is being developed for use in K-12 science and/or engineering settings where integrated STEM instruction takes place. While the importance of integrated STEM education is established through national policy documents, there remains disagreement on models and effective approaches for integrated STEM instruction. Our broad definition of integrated STEM includes the use of two or more STEM disciplines to solve a real-world problem or design challenge that supports student development of 21st century skills. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning that can be used to inform research of the effectiveness of new models and strategies. Existing instruments most commonly used by researchers, such as the Reformed Teaching Observation Protocol (RTOP), were designed prior to the development of the Next Generation Science Standards and the integration of engineering into science standards. These instruments were also designed for use in reform-based science classrooms, not engineering or integrated STEM learning environments. While engineering-focused observation protocols do exist for K-12 classrooms, they do not evaluate beyond an engineering focus, making them limited tools to evaluate integrated STEM instruction. In order to facilitate the implementation of integrated STEM in K-12 classrooms and the development of the nascent integrated STEM education literature, our research team is developing a new integrated STEM observation protocol for use in K-12 science and engineering classrooms. This valid and reliable instrument will be designed for use in a variety of educational contexts and by different education stakeholders to increase the quality of K-12 STEM education. At the end of this project, the STEM-OP will be made available through an online platform that will include an embedded training program to facilitate its broad use. In the first year of this four-year project, we are working on the initial development of the STEM-OP through video analysis and exploratory factor analysis. We are utilizing existing classroom video from a previous project with approximately 2,000 unique classroom videos representing a variety of grade levels (4-9), science content (life, earth, and physical science), engineering design challenges, and school demographics (urban, suburban). The development of the STEM-OP is guided by published frameworks that focus on providing quality K-12 integrated STEM and engineering education, such as the Framework for Quality K-12 Engineering Education. Our anticipated results at the time the ASEE meeting will include a review of our item development process and finalized items included on the draft STEM-OP. Additionally, we anticipate being able to share findings from the exploratory factor analysis (EFA) on our video-coded data, which will identify distinct instructional dimensions responsible for integrated STEM instruction. We value the opportunity to gather feedback from the engineering education community as the integration of engineering design and practices is integral to quality integrated STEM instruction. 
    more » « less