skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Laboratory Practice of K-5 Teachers in an Engineering RET: Triangulating Perceptions and Experience
This study advances our team’s overall design and development goal of creating a valid and reliable observation protocol for science and engineering practices (SEPs) experienced by teachers working in research laboratories under the auspices of Research Experience for Teachers (RET). This protocol offers the potential for addressing a wide range of persistent questions related to the experience of RET participants by looking inside the blackbox of apprenticed professional research practice. Framed by cognitive apprenticeship and situated in an engineering RET for K5 teachers, we independently document the SEPs that were consistently experienced across laboratory contexts and thus define a generalized teacher experience. Further, we identify key associations among the teacher's perception of their work, an independent observation of that activity and the perceptions reported by their graduate student mentors. Findings indicate that teacher participants’ perceptions of involvement and not actual experience was a more important predictor of confidence in practice. Perhaps most striking was the negative relationship between teacher confidence when working with mentors (r = -.242), which is similarly described by the mentors for working with teachers (r = -.356). This implies a strong need for further work and support for helping these unique individuals to understand each other’s goals and perspectives and for finding a way to work together that generates mutual feelings of confidence and satisfaction.  more » « less
Award ID(s):
1711543
PAR ID:
10333231
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Annual Meeting of the American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study advances our design and development goal of creating a valid and reliable observation protocol for science and engineering practices (SEPs) experienced by participants working in research laboratories under the auspices of RET. This protocol offers the potential for addressing persistent questions related to participant experience by looking inside the blackbox of apprenticed professional research practice. Framed by cognitive apprenticeship and situated in an engineering RET for K-5 teachers (EEC-1711543), we independently document the SEPs which were consistently experienced across contexts and thus define a generalized teacher experience. Further, we identify key associations among the teacher's perception of their work, an independent observation and that reported by their graduate student mentors. Findings indicate that perception of involvement with any particular practice and not actual experience was a more important predictor of confidence. Perhaps most striking was the negative relationship between teacher confidence when working with mentors (r=-.242), which is similarly described by the mentors for working with teachers (r=-.356). This implies a strong need for further work and support for helping these individuals to understand each other’s goals and perspectives and for finding a way to work together that generates mutual feelings of confidence and satisfaction. 
    more » « less
  2. This study describes the design and development of an observation protocol for science and engineering practices (SEPs) experienced by teachers working in research laboratories under the auspices of Research Experiences for Teachers (RET). Development has proceeded iteratively through two-cycles of use and refinement based upon the observation of K-5 teachers working in engineering research laboratories as part of an NSF-funded RET site (EEC-1711543). This protocol offers the potential for looking inside the blackbox of apprenticed professional practice in the context of a research laboratory, which for K-12 teacher participants, has been previously only described through self-report. Data derived from this method, which can be viewed holistically or chronologically, can be used to triangulate and enhance other forms of data, for defining new processes or explaining outcomes and ultimately for enhancing programmatic functions. 
    more » « less
  3. The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students. 
    more » « less
  4. In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access. 
    more » « less
  5. In this paper we describe a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought ten undergraduate science and engineering students and five local middle and high school teachers on campus for an 8-week research experiences working with different lab groups. Given the relatively small number of participants, we chose qualitative interviews as our primary source of data for assessing the effectiveness of this program. The participants identified numerous positive aspects of participating in the summer research program. Students appreciated the sense of community they developed with both the other participants in the research program and the other members of their lab groups. Although most of the participants did not report the summer research experience as having a strong influence on their decisions to pursue graduate school or careers involving research, they did report both being more confident in their ability to be successful as a researcher and appreciating the opportunity to learn more about the practice of engineering research in an academic setting. For the teachers involved in the program we describe how participation influenced their leadership, perceptions of adoption educational innovations, and willingness to provide more opportunities to engage their students in authentic STEM research. The participants also provided several recommendations for improvement to the summer research program. For the students, these included more materials in advance and a more streamlined onboarding process to allow them to get up to speed on their projects more quickly, consistent access to their supervisors, and work that is intellectually challenging. Suggestion from the teacher participants for improvement mostly involved requests for more guidance on how to incorporate what they were learning in their research into lessons for their classrooms. By describing this program and the successes and challenges encountered by the participants and organizers, we intend to help others considering implementing REU/RET programs or other summer research experiences to design and implement successful programs. 
    more » « less