skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MONOID ACTIONS AND ULTRAFILTER METHODS IN RAMSEY THEORY
First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups. Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and prove a theorem that such statements are implied by the existence of appropriate homomorphisms between the algebraic structures. We make a connection between the two themes above, which allows us to prove some general Ramsey theorems for sequences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is stronger than the original one. We answer in the negative a question of Lupini on possible extensions of Gowers’ Ramsey theorem.  more » « less
Award ID(s):
1800680
PAR ID:
10143642
Author(s) / Creator(s):
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
7
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties. This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which we state using the formalism of Nori motives. More precisely, we prove a version of the Ax–Schanuel conjecture for the comparison between the flat and algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures. This can be seen as a generalization of the recent Ax–Schanuel theorems of [13, 18] for mixed period maps. 
    more » « less
  2. Milliken’s tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey’s theorem and its many variants and consequences. In this sense, Milliken’s tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive. Motivated by a question of Dobrinen, we initiate the study of Milliken’s tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey’s theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken’s tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-Laüchli theorem, which is a key ingredient. Our advance here stems from a careful analysis of the Halpern-Laüchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken’s tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken’s tree theorem. This enables us to build solutions to the full Milliken’s tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken’s tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken’s tree theorem. We apply our analysis also to several well-known applications of Milliken’s tree theorem, namely Devlin’s theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey’s theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken’s tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker’s notion of big Ramsey structure. 
    more » « less
  3. ABSTRACT We study extensions of Turán Theorem in edge‐weighted settings. A particular case of interest is when constraints on the weight of an edge come from the order of the largest clique containing it. These problems are motivated by Ramsey‐Turán type problems. Some of our proofs are based on the method of graph Lagrangians, while the other proofs use flag algebras. Using these results, we prove several new upper bounds on the Ramsey‐Turán density of cliques. Other applications of our results are in a recent paper of Balogh, Chen, McCourt, and Murley. 
    more » « less
  4. We present gOTzilla, a protocol for interactive zero-knowledge proofs for very large disjunctive statements of the following format: given publicly known circuit C, and set of values Y = {y1 , . . . , yn }, prove knowledge of a witness x such that C(x) = y1 ∨ C(x) = y2 ∨ · · · ∨ C(x) = yn . These type of statements are extremely important for the proof of assets (PoA) problem in cryptocurrencies where a prover wants to prove the knowledge of a secret key sk that associates with the hash of a public key H(pk) posted on the ledger. We note that the size of n in popular cryptocurrencies, such as Bitcoin, is estimated to 80 million. For the construction of gOTzilla, we start by observing that if we restructure the proof statement to an equivalent of proving knowledge of (x, y) such that (C(x) = y) ∧ (y = y1 ∨ · · · ∨ y = yn )), then we can reduce the disjunction of equalities to 1-out-of-N oblivious transfer (OT). Our overall protocol is based on the MPC in the head (MPCitH) paradigm. We additionally provide a concrete, efficient extension of our protocol for the case where C combines algebraic and non-algebraic statements (which is the case in the PoA application). We achieve an asymptotic communication cost of O(log n) plus the proof size of the underlying MPCitH protocol. While related work has similar asymptotic complexity, our approach results in concrete performance improvements. We implement our protocol and provide benchmarks. Concretely, for a set of size 1 million entries, the total run-time of our protocol is 14.89 seconds using 48 threads, with 6.18 MB total communication, which is about 4x faster compared to the state of the art when considering a disjunctive statement with algebraic and non-algebraic elements. 
    more » « less
  5. We study intersection theory for differential algebraic varieties. Particularly, we study families of differential hypersurface sections of arbitrary affine differential algebraic varieties over a differential field. We prove the differential analogue of Bertini’s theorem, namely that for an arbitrary geometrically irreducible differential algebraic variety which is not an algebraic curve, generic hypersurface sections are geometrically irreducible and codimension one. Surprisingly, we prove a stronger result in the case that the order of the differential hypersurface is at least one; namely that the generic differential hypersurface sections of an irreducible differential algebraic variety are irreducible and codimension one. We also calculate the Kolchin polynomials of the intersections and prove several other results regarding intersections of differential algebraic varieties. 
    more » « less