skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limiting magnetic field for minimal deformation of a magnetized neutron star
Aims . In this work, we study the structure of neutron stars under the effect of a poloidal magnetic field and determine the limiting largest magnetic field strength that induces a deformation such that the ratio between the polar and equatorial radii does not exceed 2%. We consider that, under these conditions, the description of magnetic neutron stars in the spherical symmetry regime is still satisfactory. Methods . We described different compositions of stars (nucleonic, hyperonic, and hybrid) using three state-of-the-art relativistic mean field models (NL3 ω ρ , MBF, and CMF, respectively) for the microscopic description of matter, all in agreement with standard experimental and observational data. The structure of stars was described by the general relativistic solution of both Einstein’s field equations assuming spherical symmetry and Einstein-Maxwell’s field equations assuming an axi-symmetric deformation. Results . We find a limiting magnetic moment on the order of 2 × 10 31 Am 2 , which corresponds to magnetic fields on the order of 10 16 G at the surface and 10 17 G at the center of the star, above which the deformation due to the magnetic field is above 2%, and therefore not negligible. We show that the intensity of the magnetic field developed in the star depends on the equation of state (EoS), and, for a given baryonic mass and fixed magnetic moment, larger fields are attained with softer EoS. We also show that the appearance of exotic degrees of freedom, such as hyperons or a quark core, is disfavored in the presence of a very strong magnetic field. As a consequence, a highly magnetized nucleonic star may suffer an internal conversion due to the decay of the magnetic field, which could be accompanied by a sudden cooling of the star or a gamma ray burst.  more » « less
Award ID(s):
1748621
PAR ID:
10143770
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
627
ISSN:
0004-6361
Page Range / eLocation ID:
A61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neutron stars are the endpoint of the life of intermediate mass stars and posses in their cores matter in the most extreme conditions in the universe. Besides their extremes of temperature (found in proto-neutron stars) and densities, typical neutron star' magnetic fields can easily reach trillions of times higher the one of the Sun. Among these stars, about 10% are denominated magnetars which possess even stronger surface magnetic fields of up to 10^15-10^16 G. In this conference proceeding, we present a short review of the history and current literature regarding the modeling of magnetic neutron stars. Our goal is to present the results regarding the introduction of magnetic fields in the equation of state of matter using Relativistic Mean Field models (RMF models) and in the solution of Einstein's equations coupled to the Maxwell's equations in order to generate a consistent calculation of magnetic stars structure. We discuss how equation of state modeling affects mass, radius, deformation, composition and magnetic field distribution in stars and also what are the open questions in this field of research. 
    more » « less
  2. null (Ed.)
    ABSTRACT We revisit Bondi accretion – steady-state, adiabatic, spherical gas flow on to a Schwarzschild black hole at rest in an asymptotically homogeneous medium – for stiff polytropic equations of state (EOSs) with adiabatic indices Γ > 5/3. A general relativistic treatment is required to determine their accretion rates, for which we provide exact expressions. We discuss several qualitative differences between results for soft and stiff EOSs – including the appearance of a minimum steady-state accretion rate for EOSs with Γ ≥ 5/3 – and explore limiting cases in order to examine these differences. As an example, we highlight results for Γ = 2, which is often used in numerical simulations to model the EOS of neutron stars. We also discuss a special case with this index, the ultrarelativistic ‘causal’ EOS, P = ρ. The latter serves as a useful limit for the still undetermined neutron star EOS above nuclear density. The results are useful, for example, to estimate the accretion rate on to a mini-black hole residing at the centre of a neutron star. 
    more » « less
  3. Abstract The effects of strong magnetic fields on the deconfinement phase transition expected to take place in the interior of massive neutron stars are studied in detail for the first time. For hadronic matter, the very general density-dependent relativistic mean field model is employed, while the simple, but effective vector-enhanced bag model is used to study quark matter. Magnetic-field effects are incorporated into the matter equation of state and in the general-relativity solutions, which also satisfy Maxwell’s equations. We find that for large values of magnetic dipole moment, the maximum mass, canonical mass radius, and dimensionless tidal deformability obtained for stars using spherically symmetric Tolman–Oppenheimer–Volkoff (TOV) equations and axisymmetric solutions attained through the LORENE library differ considerably. The deviations depend on the stiffness of the equation of state and on the star mass being analyzed. This points to the fact that, unlike what was assumed previously in the literature, magnetic field thresholds for the approximation of isotropic stars and the acceptable use of TOV equations depend on the matter composition and interactions. 
    more » « less
  4. Abstract Highly magnetized neutron stars are promising candidates to explain some of the most peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and superluminous supernovae. Pulsations of these highly magnetized neutron stars are also speculated to produce detectable gravitational waves. In addition, pulsations are important probes of the structure and equation of state of the neutron stars. The major challenge in studying the pulsations of highly magnetized neutron stars is the demanding numerical cost of consistently solving the nonlinear Einstein and Maxwell equations under minimum assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of 1015−17G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics simulations. We show that stellar oscillations are insensitive to magnetization effects until the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode frequencies are strongly suppressed. We further show that this is the direct consequence of the decrease in stellar compactness when the extreme magnetic fields introduce strong deformations of the neutron stars. 
    more » « less
  5. It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with m=2 sets the limit of stable rotation for cold neutron stars (T≲1010 K) with masses between 1M⊙ and 2M⊙. This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96M⊙ and 2.10M⊙, the m=2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period). 
    more » « less