skip to main content

Title: Oscillations of highly magnetized non-rotating neutron stars
Abstract

Highly magnetized neutron stars are promising candidates to explain some of the most peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and superluminous supernovae. Pulsations of these highly magnetized neutron stars are also speculated to produce detectable gravitational waves. In addition, pulsations are important probes of the structure and equation of state of the neutron stars. The major challenge in studying the pulsations of highly magnetized neutron stars is the demanding numerical cost of consistently solving the nonlinear Einstein and Maxwell equations under minimum assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of 1015−17G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics simulations. We show that stellar oscillations are insensitive to magnetization effects until the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode frequencies are strongly suppressed. We further show that this is the direct consequence of the decrease in stellar compactness when the extreme magnetic fields introduce strong deformations of the neutron stars.

Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10387511
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    A repeating source of fast radio bursts (FRBs) is recently discovered from a globular cluster of M81. Association with a globular cluster (or other old stellar systems) suggests that strongly magnetized neutron stars, which are the most likely objects responsible for FRBs, are born not only when young massive stars undergo core-collapse, but also by mergers of old white dwarfs. We find that the fractional contribution to the total FRB rate by old stellar populations is at least a few per cent, and the precise fraction can be constrained by FRB searches in the directions of nearby galaxies, both star-forming and elliptical ones. Using very general arguments, we show that the activity time of the M81-FRB source is between 104 and 106 yr, and more likely of the order of 105 yr. The energetics of radio outbursts put a lower limit on the magnetic field strength of 10$^{13}\,$G, and the spin period $\gtrsim 0.2\,$s, thereby ruling out the source being a milli-second pulsar. The upper limit on the persistent X-ray luminosity (provided by Chandra), together with the high FRB luminosity and frequent repetitions, severely constrains (or rules out) the possibility that the M81-FRB is a scaled-up version of giant pulses frommore »Galactic pulsars. Finally, the 50-ns variability time of the FRB light curve suggests that the emission is produced in a compact region inside the neutron star magnetosphere, as it cannot be accounted for when the emission is at distances $\gtrsim 10^{10}\rm \, cm$.

    « less
  2. Abstract We consider topological configurations of the magnetically coupled spinning stellar binaries (e.g., merging neutron stars or interacting star–planet systems). We discuss conditions when the stellar spins and the orbital motion nearly “compensate” each other, leading to very slow overall winding of the coupled magnetic fields; slowly winding configurations allow gradual accumulation of magnetic energy, which is eventually released in a flare when the instability threshold is reached. We find that this slow winding can be global and/or local. We describe the topology of the relevant space F = T 1 S 2 as the unit tangent bundle of the two-sphere and find conditions for slowly winding configurations in terms of magnetic moments, spins, and orbital momentum. These conditions become ambiguous near the topological bifurcation points; in certain cases, they also depend on the relative phases of the spin and orbital motions. In the case of merging magnetized neutron stars, if one of the stars is a millisecond pulsar, spinning at ∼10 ms, the global resonance ω 1 + ω 2 = 2Ω (spin-plus beat is two times the orbital period) occurs approximately one second before the merger; the total energy of the flare can be as large as 10%more »of the total magnetic energy, producing bursts of luminosity ∼10 44 erg s −1 . Higher order local resonances may have similar powers, since the amount of involved magnetic flux tubes may be comparable to the total connected flux.« less
  3. Abstract

    The origins of the various outbursts of hard X-rays from magnetars (highly magnetized neutron stars) are still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, i.e., catastrophic lateral instabilities triggered by a critical footpoint displacement ofψcritπ. In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, ≲1043erg. Such events occur when significant energy builds up while deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares, due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching amore »critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind—for example, via relativistic magnetic reconnection or shocks.

    « less
  4. Aims . In this work, we study the structure of neutron stars under the effect of a poloidal magnetic field and determine the limiting largest magnetic field strength that induces a deformation such that the ratio between the polar and equatorial radii does not exceed 2%. We consider that, under these conditions, the description of magnetic neutron stars in the spherical symmetry regime is still satisfactory. Methods . We described different compositions of stars (nucleonic, hyperonic, and hybrid) using three state-of-the-art relativistic mean field models (NL3 ω ρ , MBF, and CMF, respectively) for the microscopic description of matter, all in agreement with standard experimental and observational data. The structure of stars was described by the general relativistic solution of both Einstein’s field equations assuming spherical symmetry and Einstein-Maxwell’s field equations assuming an axi-symmetric deformation. Results . We find a limiting magnetic moment on the order of 2 × 10 31 Am 2 , which corresponds to magnetic fields on the order of 10 16 G at the surface and 10 17 G at the center of the star, above which the deformation due to the magnetic field is above 2%, and therefore not negligible. We show that the intensity of themore »magnetic field developed in the star depends on the equation of state (EoS), and, for a given baryonic mass and fixed magnetic moment, larger fields are attained with softer EoS. We also show that the appearance of exotic degrees of freedom, such as hyperons or a quark core, is disfavored in the presence of a very strong magnetic field. As a consequence, a highly magnetized nucleonic star may suffer an internal conversion due to the decay of the magnetic field, which could be accompanied by a sudden cooling of the star or a gamma ray burst.« less
  5. Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effectivemore »anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models.« less