skip to main content


Title: Performance Prediction for Non-Factoid Question Answering
Estimating the quality of a result list, often referred to as query performance prediction (QPP), is a challenging and important task in information retrieval. It can be used as feedback to users, search engines, and system administrators. Although predicting the performance of retrieval models has been extensively studied for the ad-hoc retrieval task, the effectiveness of performance prediction methods for question answering (QA) systems is relatively unstudied. The short length of answers, the dominance of neural models in QA, and the re-ranking nature of most QA systems make performance prediction for QA a unique, important, and technically interesting task. In this paper, we introduce and motivate the task of performance prediction for non-factoid question answering and propose a neural performance predictor for this task. Our experiments on two recent datasets demonstrate that the proposed model outperforms competitive baselines in all settings.  more » « less
Award ID(s):
1715095
NSF-PAR ID:
10143771
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval - ICTIR '19
Page Range / eLocation ID:
55 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research studies graph-based approaches for Answer Sentence Selection (AS2), an essential component for retrieval-based Question Answering (QA) systems. During offline learning, our model constructs a small-scale relevant training graph per question in an unsupervised manner, and integrates with Graph Neural Networks. Graph nodes are question sentence to answer sentence pairs. We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs, and use thresholding on relevance scores for creating graph edges. Online inference is then performed to solve the AS2 task on unseen queries. Experiments on two well-known academic benchmarks and a real-world dataset show that our approach consistently outperforms SOTA QA baseline models. 
    more » « less
  2. Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents. This is usually done through two separate models, a retriever that encodes the query and finds nearest neighbors, and a reader based on Transformers. These two components are usually modeled separately, which necessitates a cumbersome implementation and is awkward to optimize in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs retrieval as attention (RAA), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that an end-to-end trained single Transformer can achieve both competitive retrieval and QA performance on in-domain datasets, matching or even slightly outperforming state-of-the-art dense retrievers and readers. Moreover, end-to-end adaptation of our model significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable end-to-end solution for knowledge-intensive tasks. 
    more » « less
  3. Question Answering (QA) requires understanding queries expressed in natural languages and relevant information content to provide an answer. For closed-world QAs, information access is by means of either context texts, or a Knowledge Base (KB), or both. KBs are human-generated schematic representations of world knowledge. The representational ability of neural networks to generalize world information makes it an important component of current QA research. In this paper, we study the neural networks and QA systems in the context of KBs. Specifically, we focus on surveying methods for KB embedding, how such embeddings are integrated into the neural networks, and the role such embeddings play in improving performance across different question-answering problems. 
    more » « less
  4. Conversational AI is a rapidly developing research field in both industry and academia. As one of the major branches of conversational AI, question answering and conversational search has attracted significant attention of researchers in the information retrieval community. It has been a long overdue feature for search engines or conversational assistants to retrieve information iteratively and interactively in a conversational manner. Previous work argues that conversational question answering (ConvQA) is a simplified but concrete setting of conversational search. In this setting, one of the major challenges is to leverage the conversation history to understand and answer the current question. In this work, we propose a novel solution for ConvQA that involves three aspects. First, we propose a positional history answer embedding method to encode conversation history with position information using BERT (Bidirectional Encoder Representations from Transformers) in a natural way. BERT is a powerful technique for text representation. Second, we design a history attention mechanism (HAM) to conduct a "soft selection" for conversation histories. This method attends to history turns with different weights based on how helpful they are on answering the current question. Third, in addition to handling conversation history, we take advantage of multi-task learning (MTL) to do answer prediction along with another essential conversation task (dialog act prediction) using a uniform model architecture. MTL is able to learn more expressive and generic representations to improve the performance of ConvQA. We demonstrate the effectiveness of our model with extensive experimental evaluations on QuAC, a large-scale ConvQA dataset. We show that position information plays an important role in conversation history modeling. We also visualize the history attention and provide new insights into conversation history understanding. The complete implementation of our model will be open-sourced. 
    more » « less
  5. Clinical question answering (QA) aims to automatically answer questions from medical professionals based on clinical texts. Studies show that neural QA models trained on one corpus may not generalize well to new clinical texts from a different institute or a different patient group, where large-scale QA pairs are not readily available for model retraining. To address this challenge, we propose a simple yet effective framework, CliniQG4QA, which leverages question generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA models without requiring manual annotations. In order to generate diverse types of questions that are essential for training QA models, we further introduce a seq2seq-based question phrase prediction (QPP) module that can be used together with most existing QG models to diversify the generation. Our comprehensive experiment results show that the QA corpus generated by our framework can improve QA models on the new contexts (up to 8% absolute gain in terms of Exact Match), and that the QPP module plays a crucial role in achieving the gain. 
    more » « less