Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific and knowledge-intensive tasks, LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions. Additionally, fine tuning LLMs' intrinsic knowledge to highly specific domains is an expensive and time consuming process. The retrieval-augmented generation (RAG) process has recently emerged as a method capable of optimization of LLM responses, by referencing them to a predetermined ontology. It was shown that using a Knowledge Graph (KG) ontology for RAG improves the QA accuracy, by taking into account relevant sub-graphs that preserve the information in a structured manner. In this paper, we introduce SMART-SLIC, a highly domain-specific LLM framework, that integrates RAG with KG and a vector store (VS) that store factual domain specific information. Importantly, to avoid hallucinations in the KG, we build these highly domain-specific KGs and VSs without the use of LLMs, but via NLP, data mining, and nonnegative tensor factorization with automatic model selection. Pairing our RAG with a domain-specific: (i) KG (containing structured information), and (ii) VS (containing unstructured information) enables the development of domain-specific chat-bots that attribute the source of information, mitigate hallucinations, lessen the need for fine-tuning, and excel in highly domain-specific question answering tasks. We pair SMART-SLIC with chain-of-thought prompting agents. The framework is designed to be generalizable to adapt to any specific or specialized domain. In this paper, we demonstrate the question answering capabilities of our framework on a corpus of scientific publications on malware analysis and anomaly detection.
more »
« less
Knowledge Graph Prompting for Multi-Document Question Answering
The `pre-train, prompt, predict' paradigm of large language models (LLMs) has achieved remarkable success in open-domain question answering (OD-QA). However, few works explore this paradigm in multi-document question answering (MD-QA), a task demanding a thorough understanding of the logical associations among the contents and structures of documents. To fill this crucial gap, we propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting LLMs for MD-QA, which consists of a graph construction module and a graph traversal module. For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables), and edges denoting the semantic/lexical similarity between passages or document structural relations. For graph traversal, we design an LLM-based graph traversal agent that navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency. Concurrently, the graph traversal agent acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design and retrieval augmented generation for LLMs. Our code: https://github.com/YuWVandy/KG-LLM-MDQA.
more »
« less
- Award ID(s):
- 2239881
- PAR ID:
- 10528805
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 17
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 19206 to 19214
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. Here we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph-based message passing. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.more » « less
-
Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specialized domains. In this work, we introduce DALK, a.k.a. Dynamic Co-Augmentation of LLMs and KG, to address this limitation and demonstrate its ability on studying Alzheimer's Disease (AD), a specialized sub-field in biomedicine and a global health priority. With a synergized framework of LLM and KG mutually enhancing each other, we first leverage LLM to construct an evolving AD-specific knowledge graph (KG) sourced from AD-related scientific literature, and then we utilize a coarse-to-fine sampling method with a novel self-aware knowledge retrieval approach to select appropriate knowledge from the KG to augment LLM inference capabilities. The experimental results, conducted on our constructed AD question answering (ADQA) benchmark, underscore the efficacy of DALK. Additionally, we perform a series of detailed analyses that can offer valuable insights and guidelines for the emerging topic of mutually enhancing KG and LLM.more » « less
-
VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks for Visual Question AnsweringVisual question answering (VQA) requires systems to perform concept-level reasoning by unifying unstructured (e.g., the context in question and answer; “QA context”) and structured (e.g., knowledge graph for the QA context and scene; “concept graph”) multimodal knowledge. Existing works typically combine a scene graph and a concept graph of the scene by connecting corresponding visual nodes and concept nodes, then incorporate the QA context representation to perform question answering. However, these methods only perform a unidirectional fusion from unstructured knowledge to structured knowledge, limiting their potential to capture joint reasoning over the heterogeneous modalities of knowledge. To perform more expressive reasoning, we propose VQA-GNN, a new VQA model that performs bidirectional fusion between unstructured and structured multimodal knowledge to obtain unified knowledge representations. Specifically, we inter-connect the scene graph and the concept graph through a super node that represents the QA context, and introduce a new multimodal GNN technique to perform inter-modal message passing for reasoning that mitigates representational gaps between modalities. On two challenging VQA tasks (VCR and GQA), our method outperforms strong baseline VQA methods by 3.2% on VCR (Q-AR) and 4.6% on GQA, suggesting its strength in performing concept-level reasoning. Ablation studies further demonstrate the efficacy of the bidirectional fusion and multimodal GNN method in unifying unstructured and structured multimodal knowledge.more » « less
-
This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge in the form of a knowledge graph (KG). We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN). DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges dynamically for learning node representations in the graph network. This explicit usage of relevance as graph edges has the following advantages, a) the model can exploit the existing relationships, re-scale the node weights, and influence the way the neighborhood nodes’ representations are aggregated in the KG subgraph, b) It potentially recovers the missing edges in KG that are needed for reasoning. Moreover, as a byproduct, our model improves handling the negative questions due to considering the relevance between the question node and the graph entities. Our proposed approach shows competitive performance on two QA benchmarks, CommonsenseQA and OpenbookQA, compared to the state-of-the-art published results.more » « less
An official website of the United States government

