skip to main content

Title: Reduced-Order Modeling and Experimental Studies of Bilaterally Coupled Fluid–Structure Interaction in Single-Degree-of-Freedom Flapping Wings
Abstract Flapping wings deform under both aerodynamic and inertial forces. However, many flapping wing fluid–structure interaction (FSI) models require significant computational resources which limit their effectiveness for high-dimensional parametric studies. Here, we present a simple bilaterally coupled FSI model for a wing subject to single-degree-of-freedom (SDOF) flapping. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. To verify the model experimentally, we construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum. Overall, the derived model estimates wing strain with good accuracy. In-vacuum, the wing has a large 3ω response when flapping at approximately one-third of its natural frequency due to a superharmonic resonance, where the superharmonic occurs due to the interaction of inertial forces and time-varying centrifugal softening. In-air, this 3ω response is attenuated significantly as a result of aerodynamic damping, whereas the primary ω response is increased due to aerodynamic loading. These results highlight the importance of (1) bilateral coupling between the fluid and structure, since unilaterally coupled approaches do not adequately describe deformation-induced aerodynamic damping and (2) time-varying stiffness, which generates superharmonics of the flapping frequency in the wing’s dynamic response. The simple more » SDOF model and experimental study presented in this work demonstrate the potential for a reduced-order FSI model that considers both bilateral fluid–structure coupling and realistic multi-degrees-of-freedom flapping kinematics moving forward. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Vibration and Acoustics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flapping, flexible wings deform under both aerodynamic and inertial loads. However, the fluid-structure interaction (FSI) governing flapping wing dynamics is not well understood. Conventional FSI models require excessive computational resources and are not conducive to parameter studies that consider variable wing kinematics or geometry. Here, we present a simple two-way coupled FSI model for a wing subjected to single-degree-of-freedom (SDOF) rotation. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. We construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum to study our modelmore »experimentally. Overall, agreement between theory and experiment is excellent. In-vacuum, the wing has a large 3ω response when flapping at approximately 1/3 its natural frequency. This response is attenuated substantially when flapping in-air as a result of aerodynamic damping. These results highlight the importance of two-way coupling between the fluid and structure, since one-way coupled approaches cannot describe such phenomena. Moving forward, our model enables advanced studies of biological flight and facilitates bio-inspired design of flapping wing technologies.

    « less
  2. Abstract

    Flapping insect wings experience appreciable deformation due to aerodynamic and inertial forces. This deformation is believed to benefit the insect’s aerodynamic force production as well as energetic efficiency. However, the fluid-structure interaction (FSI) models used to estimate wing deformations are often computationally demanding and are therefore challenged by parametric studies. Here, we develop a simple FSI model of a flapping wing idealized as a two-dimensional pitching-plunging airfoil. Using the Lagrangian formulation, we derive the reduced-order structural framework governing wing’s elastic deformation. We consider two fluid models: quasi-steady Deformable Blade Element Theory (DBET) and Unsteady Vortex Lattice Method (UVLM). DBETmore »is computationally economical but does not provide insight into the flow structure surrounding the wing, whereas UVLM approximates flows but requires more time to solve. For simple flapping kinematics, DBET and UVLM produce similar estimates of the aerodynamic force normal to the surface of a rigid wing. More importantly, when the wing is permitted to deform, DBET and UVLM agree well in predicting wingtip deflection and aerodynamic normal force. The most notable difference between the model predictions is a roughly 20° phase difference in normal force. DBET estimates wing deformation and force production approximately 15 times faster than UVLM for the parameters considered, and both models solve in under a minute when considering 15 flapping periods. Moving forward, we will benchmark both low-order models with respect to high fidelity computational fluid dynamics coupled to finite element analysis, and assess the agreement between DBET and UVLM over a broader range of flapping kinematics.

    « less
  3. Fluid–structure interaction (FSI) plays a significant role in the deformation of flapping insect wings. However, many current FSI models are high-order and rely on direct computational methods, thereby limiting parametric studies as well as insights into the physics governing wing dynamics. We develop a novel flapping wing FSI framework that accommodates general wing geometry and fluid loading. We use this framework to study the unilaterally coupled FSI of an idealized hawkmoth forewing considering two fluid models: Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) and blade element theory (BET). We first compare aerodynamic modal forces estimated by the low-order BET modelmore »to those calculated via high fidelity RANS CFD. We find that for realistic flapping kinematics, BET estimates modal forces five orders of magnitude faster than CFD within reasonable accuracy. Over the range flapping kinematics considered, BET and CFD estimated modal forces vary maximally by 350% in magnitude and approximately π/2 radians in phase. The large reduction in computational time offered by BET facilitates high-dimensional parametric design of flapping-wing-based technologies. Next, we compare the contributions of aerodynamic and inertial forces to wing deformation. Under the unilateral coupling assumption, aerodynamic and inertial-elastic forces are on the same order of magnitude—however, inertial-elastic forces primarily excite the wing’s bending mode whereas aerodynamic forces primarily excite the wing’s torsional mode. This suggests that, via conscientious sensor placement and orientation, biological wings may be able to sense independently inertial and aerodynamic forces.« less
  4. We mimic a flapping wing through a fluid–structure interaction (FSI) framework based upon a generalized lumped-torsional flexibility model. The developed fluid and structural solvers together determine the aerodynamic forces, wing deformation and self-propelled motion. A phenomenological solution to the linear single-spring structural dynamics equation is established to help offer insight and validate the computations under the limit of small deformation. The cruising velocity and power requirements are evaluated by varying the flapping Reynolds number ( $20\leqslant Re_{f}\leqslant 100$ ), stiffness (represented by frequency ratio, $1\lesssim \unicode[STIX]{x1D714}^{\ast }\leqslant 10$ ) and the ratio of aerodynamic to structural inertia forces (represented bymore »a dimensionless parameter $\unicode[STIX]{x1D713}$ ( $0.1\leqslant \unicode[STIX]{x1D713}\leqslant 3$ )). For structural inertia dominated flows ( $\unicode[STIX]{x1D713}\ll 1$ ), pitching and plunging are shown to always remain in phase ( $\unicode[STIX]{x1D719}\approx 0$ ) with the maximum wing deformation occurring at the end of the stroke. When aerodynamics dominates ( $\unicode[STIX]{x1D713}>1$ ), a large phase difference is induced ( $\unicode[STIX]{x1D719}\approx \unicode[STIX]{x03C0}/2$ ) and the maximum deformation occurs at mid-stroke. Lattice Boltzmann simulations show that there is an optimal $\unicode[STIX]{x1D714}^{\ast }$ at which cruising velocity is maximized and the location of optimum shifts away from unit frequency ratio ( $\unicode[STIX]{x1D714}^{\ast }=1$ ) as $\unicode[STIX]{x1D713}$ increases. Furthermore, aerodynamics administered deformations exhibit better performance than those governed by structural inertia, quantified in terms of distance travelled per unit work input. Closer examination reveals that although maximum thrust transpires at unit frequency ratio, it is not transformed into the highest cruising velocity. Rather, the maximum velocity occurs at the condition when the relative tip displacement ${\approx}\,0.3$ .« less
  5. The long-range migration of Monarch butterflies extends over 4000 km. Monarchs experience varying density conditions during migration. Monarchs have been spotted at 1200 m during migration and overwinter at 3000 m, where the air density is lower than at the sea-level. Furthermore, Monarch butterflies have large flexible wings which deform significantly during flight. In this study, we test the hypothesis that the aerodynamic performance of the Monarch wing improves at reduced density conditions at higher altitudes. A design space with air density and stroke plane angle as design variables is constructed to evaluate the effects of fluid-structure interaction at highmore »altitudes in the Reynolds number regime of Re = O(10^3). The effects of chordwise wing flexibility and the aerodynamic and structural response at varying densities are investigated by solving the Navier-Stokes equations, fully coupled to a structural dynamics solver at the Monarch scale. The lift, thrust and power are calculated in the design space. Our results show that lift increases with the stroke plane angle and the air density, whereas the thrust remains close to zero. The mean power required reduces with the altitude, eventually becoming negative at 3000 m. These results suggest that at lower altitudes near sea level, Monarchs can leverage the relatively large magnitude of their lift and thrust forces. At higher altitudes butterflies can fly while minimizing the power.« less