skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preparing next generation of manufacturing leaders: a case of REU site in cybermanufacturing
Recent advancements in information, wire¬less sensing, data analysis, and 3-D printing technologies are transforming manufacturing into a highly customized process, with a short time to market, and a competitive cost structure to sustain businesses in a highly globalized market. Central to this emerging paradigm is cybermanufacturing which is a critical technology that combines the above-mentioned recent advances in technologies to transform manufacturing into essentially a commoditized "cloud-based service". Likewise, it has the poten¬tial to evoke creativity of the general population to design and create personalized products. To that end, one of the key enablers of this paradigm is the recruitment and training of a new class of manufacturing workforce that can (1) combine engineering product design capabilities with information technology tools to convert ideas into components and (2) transform a wide range of precursor materials into products to meet advanced functional requirements by using cyber-enabled machine tools. However, many students, particularly those at predominantly undergraduate institutions (UGI) and minority-serving institutions (MSI), have not been exposed to advanced or cyber-based manufacturing research and education. This paper presents a case study of NSF-funded summer research experience for undergraduates (REU) site in cybermanufacturing. The paper describes the student recruitment process, demographic information of the most recent cohort, sample student projects, and other enrichment activities that were organized during the 10-week summer REU program. As a part of program evaluation, the participants were surveyed before and after the REU experience. The survey questions covered a wide range of topics including their scientific research knowledge and skills, career knowledge and interest, and professional skills. Survey results from 2018 cohort shows that REU experience was not only very helpful for students in deciding the manufacturing as their career path but it also improved their research competency.  more » « less
Award ID(s):
1757882
PAR ID:
10143886
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE annual conference
ISSN:
0190-1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From 2017-2021, Mississippi State University’s Department of Chemistry has hosted a 10-week summer Research Experience for Undergraduates (REU) program, focused on research related to food, energy, and water security topics. The goals of this program were to train students by providing an intensive research experience, recruit minority and underrepresented students, and provide advising for future career goals. The program hosted a growing cohort of undergraduate students each summer, 113 in total, recruited from a pool of underrepresented students and those with limited research opportunities. The pre- and post-program survey results covering three summers showed consistent self-reported growth among the student cohort in the program’s focused skill sets. This manuscript presents three years of the program’s success, from initial planning stages and recruitment to final results including a description of the value of each program component. 
    more » « less
  2. Research Experience for Undergraduates (REU) programs have been credited for attracting and retaining students in science and engineering who otherwise may not have considered disciplines in science and engineering as their career choices. In addition to core research activities, REU programs generally provide multiple enrichment and professional development activities for participants. While the nature and the number of professional development activities vary from one REU program to another, the most common activities include ethics and safety training, research and industry seminars, GRE workshops, writing workshops, graduate school application preparation, and industry visits. Furthermore, some of these professional development activities are also conducted in large group settings with students from other research programs beyond the REU cohort. The rationale behind combining REU students with other researchers is to create a community of learners and provide them with an opportunity to build/extend their professional network. Although professional development activities are an integral part of the REU sites, there is often very limited coverage of such activities in the existing literature on REU projects. This paper presents the impact of professional development activities on the experience of REU participants in a manufacturing REU site at a major research university in the southwestern United States. For this study, data was collected from participants by an external evaluator by using both qualitative and quantitative methods. This paper presents and describes the cumulative data from three REU cohorts. The analysis and results of the data are disaggregated by the student academic level (sophomore, junior, senior), gender, ethnicity, the type of their home institutions (research or teaching institution), and desired career paths in the future (graduate school or industry). The paper also provides a detailed discussion and implications of these findings. 
    more » « less
  3. This paper summarizes the best practices and lessons learned from organizing an effective remote REU Site during COVID-19. Our REU Site is a three-year program that is designed to offer closely-mentored summer research experience to a cohort of ten students in each of the three years. COVID-19 has disrupted our site by forcing us to split our second cohort to two groups, two students in summer 2020 and seven students in summer 2021. However, the experience that we gained in summer 2020 by mentoring the two students virtually online has provided us with the confidence that a virtual REU Site with a larger group can be as effective as in person and on campus. To further improve the quality of our REU Site in the on-line mode, we have applied multiple novel practices. Specifically, before the start of the 2021 REU site we as the site co-directors proactively worked with mentors to better understand the needs of the defined research projects. Subsequently, we tailored the topics covered by the crash course of our site to the needs of the research projects as well as purposefully increasing active learning activities and student interactions. In lieu of the previous in-person bond building activity (a two-day high rope course in a nearby camp), we added virtual scavenger image hunt in orientation and game nights every Wednesday. During the ten weeks, we also organized a half-hour daily check-in and check-out in the morning and afternoon respectively, through which students got ample opportunities to speak in a group setting about their own accomplishments and challenges for the day as well as their plans for the next day. Moreover, a PhD pathways panel and several professional development seminars on Graduate School and the research process were successfully organized to motivate students to pursue a research career. To facilitate communication, our site adopted multiple software tools (slack, google calendar, zoom, and moodle). An independent evaluator evaluated our program through online pre- and post-program surveys for both students and mentors as well as a focus group discussion with students. The evaluation report indicates significant improvement from the summer 2021 site regarding student satisfaction compared to the previous summer 2019 on-site program. Detailed quantitative analysis and lessons learned from the report will be presented in this paper to offer valuable experience and best practices for organizing effective cohort-based undergraduate research programs. 
    more » « less
  4. null (Ed.)
    Advancements in information technology and computational intelligence have transformed the manufacturing landscape, allowing firms to produce highly complex and customized product in a relatively short amount of time. However, our research shows that the lack of a skilled workforce remains a challenge in the manufacturing industry. To that end, providing research experience to undergraduates has been widely reported as a very effective approach to attract students to industry or graduate education in engineering and other STEM-based majors. This paper presents assessment results of two cohorts of Cybermanufacturing REU at a major university. Students were recruited from across the United States majoring in multiple engineering fields, such as industrial engineering, mechanical engineering, chemical engineering, mechatronics, manufacturing, and computer science. Several of the participants were rising sophomores or juniors who did not have any industry internship or prior research experience. In total 20 students (ten per year) participated in the program and worked on individual project topics under the guidance of faculty and graduate student mentors. Unlike a typical REU program, the Cybermanufacturing REU involved a few unique activities, such as a 48-hour intense design and prototype build experience (also known as Aggies Invent), industry seminars, and industry visits. Overall, the REU students demonstrated significant gains in all of the twelve research-related competencies that were assessed as a part of formative and summative evaluation process. While almost all of them wanted to pursue a career in advanced manufacturing, including Cybermanufacturing, the majority of the participants preferred industry over graduate school. The paper provides an in-depth discussion on the findings of the REU program evaluation and its impact on undergraduate students with respect to their future plans and career choice. The analysis is also done by gender, ethnicity, academic level (sophomore, junior, senior), and type of home institution (e.g., large research universities, rural and small schools) to explore if there was any significant difference in mean research competency scores based on these attributes. 
    more » « less
  5. With increasing demands for high performance in structural systems, Smart Structures Technologies (SST), which includes advanced sensing, modern control, smart materials, optimization and novel testing, is receiving considerable attention as it has the potential to transform many fields in engineering, including civil, mechanical, aerospace, and geotechnical engineering. Currently, there is a significant gap between the engineering science with fundamental research in academia and engineering practice with potential application in the industry. To respond to this challenge, San Francisco State University and the University of South Carolina will collaborate with industrial partners to establish a Research Experiences for Undergraduates (REU) Site program, focusing on academia-industry collaborations in SST. This REU program will train undergraduate students to serve as the catalysts to facilitate the research infusion between academic and industrial partners. This student-driven joint venture between academia and industry will establish a virtuous circle for knowledge exchange and contribute to advancing both fundamental research and implementation of SST. The program will feature: formal training, workshops, and supplemental activities in the conduct of research in academia and industry; innovative research experience through engagement in projects with scientific and practical merits in both academic and industrial environments; experience in conducting laboratory experiments; and opportunities to present the research outcomes to the broader community at professional settings. This REU program will provide engineering undergraduate students a unique research experience in both academic and industrial settings through cooperative research projects. Experiencing research in both worlds is expected to help students transition from a relatively dependent status to an independent status as their competence level increases. The joint efforts among two institutions and industry partners provide the project team with extensive access to valuable resources, such as expertise to offer a wider-range of informative training workshops, advanced equipment, valuable data sets, experienced undergraduate mentors, and professional connections, that will facilitate a meaningful REU experience. Recruitment of participants will target 20 collaborating minority and primarily undergraduate institutions (15 of them are Hispanic-Serving Institutions, HSI) with limited science, technology, engineering, and mathematics (STEM) research capabilities. The model developed through this program may help to exemplify the establishment of a sustainable collaboration model between academia and industry that helps address the nation's need for mature, independent, informed, and globally competitive STEM professionals and is adapted to other disciplines. In this poster, the details of the program will be described. The challenges and lesson-learned on the collaboration between the two participating universities, communications with industrial partners, recruitment of the students, set up of the evaluation plans, and development of the program will be discussed. 
    more » « less