skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis
Steam reforming of methane (SRM) is one of the most important industrial processes, which produces 95% of hydrogen used in the USA. However, SRM is an endothermic reaction, which requires a high energy input and a high reaction temperature (>800 °C) for the current process. Furthermore, its products must be subjected to a water–gas shift (WGS) process. A photocatalytic process is expected to solve the energy issue and to eliminate the necessity of WGS for SRM. However, the hydrogen yield from the current photocatalytic steam reforming of methane (PSRM) is very low (μmol h −1 g −1 level), which is far below industrial interest. This work demonstrates that a Pt/blackTiO 2 catalyst dispersed on a light-diffuse-reflection-surface is excellent for efficient visible-light PSRM. Under visible light illumination on the catalyst by filtering UV light from AM 1.5G sunlight, CH 4 and H 2 O were directly converted into H 2 and CO 2 without WGS, leading to a high H 2 yield of 185 mmol h −1 g −1 with a quantum efficiency of 60% at 500 °C. The yield is 3 orders of magnitude larger than the reported values, which can be attributed to the synergistic effect between potential and kinetic energies. This opens up a new opportunity for hydrogen production from water and natural gas using solar energy.  more » « less
Award ID(s):
1661699
PAR ID:
10143953
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
54
ISSN:
1359-7345
Page Range / eLocation ID:
7816 to 7819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a Pt catalyst supported on an equimolar Al 2 O 3 –CeO 2 binary oxide (Pt–Al–Ce) was prepared and applied in photo-thermo-chemical dry reforming of methane (DRM) driven by concentrated solar irradiation. It was found that the Pt–Al–Ce catalyst showed good stability in DRM reactions and significant enhancements in H 2 and CO production rates compared with Pt/CeO 2 (Pt–Ce) and Pt/Al 2 O 3 (Pt–Al) catalysts. At a reaction temperature of 700 °C under 30-sun equivalent solar irradiation, the Pt–Al–Ce catalyst exhibits a stable DRM catalytic performance at a H 2 production rate of 657 mmol g −1 h −1 and a CO production rate of 666 mmol g −1 h −1 , with the H 2 /CO ratio almost equal to unity. These production rates and the H 2 /CO ratio were significantly higher than those obtained in the dark at the same temperature. The light irradiation was found to induce photocatalytic activities on Pt–Al–Ce and reduce the reaction activation energy. In situ diffuse reflectance infrared Fourier transform spectroscopy ( in situ DRIFTS) was applied to identify the active intermediates in the photo-thermo-chemical DRM process, which were bidentate/monodentate carbonate, absorbed CO on Pt, and formate. The benefits of the binary Al 2 O 3 –CeO 2 substrate could be ascribed to Al 2 O 3 promoting methane dissociation while CeO 2 stabilized and eliminated possible coke formation, leading to high catalytic DRM activity and stability. 
    more » « less
  2. The increasing interest in utilizing methane, the primary component of natural gas, for chemical production has spurred research into methane partial oxidation (MPO) as an alternative to traditional steam methane reforming (SMR). MPO has lower energy requirements and potential for carbon capture, making it an attractive option for hydrogen production. Challenges remain, however, such as carbon deposition leading to degradation and achieving high hydrogen selectivity. Here, the impact of periodic reactor operation on MPO over a Pt/Al2O3 catalyst was studied, primarily via varying reactor inlet compositions. Experiments were conducted using periodic operation strategies to assess the influence of changing reactant inlet concentrations on hydrogen formation during MPO. The results suggest that cycling between mixtures with low and high oxygen content can lead to transient hydrogen formation rates that surpass those achieved at steady state. Control experiments and density functional theory (DFT) calculations show that enhanced hydrogen formation can be attributed to the reaction between CO with hydroxyl groups at the metal and alumina support interface. This work underscores the critical role of surface coverages at the metal support interface and suggests avenues for future exploration, including alternative support materials with higher OH mobility and changes in the cycling scheme to enhance catalyst performance under periodic conditions. 
    more » « less
  3. Photocatalytic processes offer promising solutions for environmental remediation and clean energy production, yet their efficiency under the visible light spectrum remains a significant challenge. Here, we report a novel silver–graphene (Ag-G) modified TiO2 (Ag-G-TiO2) nanocomposite photocatalyst that demonstrates remarkably enhanced photocatalytic activity for both dye wastewater degradation and hydrogen production under visible and UV light irradiation. Through comprehensive characterization and performance analysis, we reveal that the Ag-G modification narrows the TiO2 bandgap from 3.12 eV to 1.79 eV, enabling efficient visible light absorption. The nanocomposite achieves a peak hydrogen production rate of 191 μmolesg−1h−1 in deionized (DI) water dye solution under visible light, significantly outperforming unmodified TiO2. Intriguingly, we observe an inverse relationship between dye degradation efficiency and hydrogen production rates in dye solutions with tap water versus DI water, highlighting the critical role of water composition in photocatalytic processes. This work not only advances the understanding of fundamental photocatalytic mechanisms but also presents a promising photocatalyst for solar-driven environmental remediation and clean energy production. The Ag-G-TiO2 nanocomposite’s enhanced performance across both visible and UV spectra, coupled with its dual functionality in dye degradation and hydrogen evolution, represents a significant step towards addressing critical challenges in water treatment and sustainable energy generation. Our findings highlight the complex interplay between light absorption and reaction conditions, offering new insights for optimizing photocatalytic systems. This research paves the way for developing more efficient and versatile photocatalysts, potentially contributing to the global transition towards sustainable technologies and circular economy in waste management and energy production. 
    more » « less
  4. null (Ed.)
    Due to its clean and sustainable nature, solar energy has been widely recognized as a green energy source in driving a variety of reactions, ranging from small molecule activation and organic transformation to biomass valorization. Within this context, organic reactions coupled with H 2 evolution via semiconductor-based photocatalytic systems under visible light irradiation have gained increasing attention in recent years, which utilize both excited electrons and holes generated on semiconductors and produce two types of value-added products, organics and H 2 , simultaneously. Based on the nature of the organic reactions, in this review article we classify semiconductor-based photocatalytic organic transformations and H 2 evolution into three categories: (i) photocatalytic organic oxidation reactions coupled with H 2 production, including oxidative upgrading of alcohols and biomass-derived intermediate compounds; (ii) photocatalytic oxidative coupling reactions integrated with H 2 generation, such as C–C, C–N, and S–S coupling reactions; and (iii) photo-reforming reactions together with H 2 formation using organic plastics, pollutants, and biomass as the substrates. Representative heterogeneous photocatalytic systems will be highlighted. Specific emphasis will be placed on their synthesis, characterization, and photocatalytic mechanism, as well as the organic reaction scope and practical application. 
    more » « less
  5. Abstract Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2evolution performance, especially for the composite 2 with a maximum H2evolution rate of 13.98 mmol g−1 h−1(turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2evolution and beyond. 
    more » « less