skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Ti‐MOF/COF Composites
Abstract Titanium metal–organic frameworks (Ti‐MOFs), as an appealing type of artificial photocatalyst, have shown great potential in the field of solar energy conversion due to their well‐studied photoredox activity (similar to TiO2) and good optical responsiveness of linkers, which serve as the antenna to absorb visible‐light. Although much effort has been dedicated to developing Ti‐MOFs with high photocatalytic activity, their solar energy conversion performances are still poor. Herein, we have implemented a covalent‐integration strategy to construct a series of multivariate Ti‐MOF/COF hybrid materials PdTCPP⊂PCN‐415(NH2)/TpPa (composites 1, 2, and 3), featuring excellent visible‐light utilization, a suitable band gap, and high surface area for photocatalytic H2production. Notably, the resulting composites demonstrated remarkably enhanced visible‐light‐driven photocatalytic H2evolution performance, especially for the composite 2 with a maximum H2evolution rate of 13.98 mmol g−1 h−1(turnover frequency (TOF)=227 h−1), which is much higher than that of PdTCPP⊂PCN‐415(NH2) (0.21 mmol g−1 h−1) and TpPa (6.51 mmol g−1 h−1). Our work thereby suggests a new approach to highly efficient photocatalysts for H2evolution and beyond.  more » « less
Award ID(s):
2029800
PAR ID:
10448025
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
3
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers. 
    more » « less
  2. Steam reforming of methane (SRM) is one of the most important industrial processes, which produces 95% of hydrogen used in the USA. However, SRM is an endothermic reaction, which requires a high energy input and a high reaction temperature (>800 °C) for the current process. Furthermore, its products must be subjected to a water–gas shift (WGS) process. A photocatalytic process is expected to solve the energy issue and to eliminate the necessity of WGS for SRM. However, the hydrogen yield from the current photocatalytic steam reforming of methane (PSRM) is very low (μmol h −1 g −1 level), which is far below industrial interest. This work demonstrates that a Pt/blackTiO 2 catalyst dispersed on a light-diffuse-reflection-surface is excellent for efficient visible-light PSRM. Under visible light illumination on the catalyst by filtering UV light from AM 1.5G sunlight, CH 4 and H 2 O were directly converted into H 2 and CO 2 without WGS, leading to a high H 2 yield of 185 mmol h −1 g −1 with a quantum efficiency of 60% at 500 °C. The yield is 3 orders of magnitude larger than the reported values, which can be attributed to the synergistic effect between potential and kinetic energies. This opens up a new opportunity for hydrogen production from water and natural gas using solar energy. 
    more » « less
  3. Abstract Photothermal CO2reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2hydrogenation rate of 758 mmol gcat−1 h−1(2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2reduction reactions. We further demonstrate with this catalyst effective CO2conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. 
    more » « less
  4. Abstract Photo‐responsive semiconductors can facilitate nitrogen activation and ammonia production, but the high recombination rate of photogenerated carriers represents a significant barrier. Ferroelectric photocatalysts show great promise in overcoming this challenge. Herein, by adopting a low‐temperature hydrothermal procedure with varying concentrations of glyoxal as the reducing agent, oxygen vacancies (Vo) are effectively produced on the surface of ferroelectric SrBi4Ti4O15(SBTO) nanosheets, which leads to a considerable increase in photocatalytic activity toward nitrogen fixation under simulated solar light with an ammonia production rate of 53.41 µmol g−1h−1, without the need of sacrificial agents or photosensitizers. This is ascribed to oxygen vacancies that markedly enhance the self‐polarization and internal electric field of ferroelectric SBTO, and hence, facilitate the separation of photogenerated charge carriers and light trapping as well as N2adsorption and activation, as compared to pristine SBTO. Consistent results are obtained in theoretical studies. Results from this study highlight the significance of surface oxygen vacancies in enhancing the performance of photocatalytic nitrogen fixation by ferroelectric catalysts. 
    more » « less
  5. Metal organic frameworks (MOFs) have emerged as a novel template to develop porous photocatalytic materials for solar fuel conversion. In this work, we report the synthesis, charge separation dynamics, and photocatalytic performance of the TiO 2 /CuO heterostructure derived from mixed-phase MOFs based on Ti and Cu metal nodes, which demonstrates significantly enhanced catalytic activity for the hydrogen evolution reaction (HER) compared to metal oxides derived from single node MOFs. More importantly, using transient absorption spectroscopy, we identified the specific role each component in the heterostructure plays and unravelled the key intermediate species that is responsible for the exceptional photocatalytic activity of the heterostructure. We found that the HER is initiated with ultrafast electron transfer (<150 fs) from the molecular photosensitizer to the conduction band of TiO 2 , where TiO 2 acts as an electron mediator and shuttles the electron to the CuO cocatalyst, facilitating charge separation and ultimately boosting the HER efficiency. These results not only demonstrate the great potential of using mixed-phase MOFs as templates to synthesize mesoporous heterostructure photocatalysts but also provide important insight into the HER mechanism. 
    more » « less