skip to main content


Title: Structure and glass transition temperatures of tellurite glasses
Tellurite glasses, made from the conditional glass former TeO2, show potential for use in optical applications. Alkali and alkaline earth tellurite glasses, along with single component, rapidly cooled, TeO2 are reported and studied here. Thermal properties of boron, potassium, lithium, sodium, rubidium, cesium, barium, and strontium tellurites were obtained via differential scanning calorimetry and related to structural changes observed using Raman spectroscopy. Additionally, coordination numbers of barium and strontium tellurites versus amount of modifier are also calculated. By understanding the thermal properties and coordination numbers of alkali and alkaline earth tellurites, the goal is to better elucidate the structure of amorphous TeO2.  more » « less
Award ID(s):
1746230
NSF-PAR ID:
10144284
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physics and chemistry of glasses
Volume:
61
Issue:
1
ISSN:
0031-9090
Page Range / eLocation ID:
21-26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The modifier field strength (FS) is believed to play an important role in determining the elastic–plastic responses of aluminoborosilicate (ABS) glasses, but its effect is not well understood. Three novel alkali and three alkaline earth (AE) ABS compositions were created for this study which is the first part of two studies that explored the elastoplastic responses of these glasses. Six compositions were designed using different network modifiers (NWMs) to cover a range of cation FS. The glasses were also designed such that the concentrations of NWM and Al2O3were similar, which maximized the three‐coordinated boron fraction in the network. It is well known that modifier FS can affect the coordination number (CN) of Al and B in an ABS glass structure, for example, a higher FS modifier can promote B3 → B4and higher [Al5,6], but the degree of this depends on network former (NWF) ratios. Previous work used solid‐state NMR spectroscopic analysis on the current glasses to find that there was variation between [B4] and [Al4] between the two glass series (alkali vs. AE) but that was attributed to synthesis factors and no trend with FS was associated with the varying NWF CN. Further,29Si ssNMR showed no evidence of NBOs which made sense based on composition. The conclusion, therefore, was that there was a far greater correlation with modifier FS for the increased mechanical and physical properties rather than the CN of Al and B. Part I of the current work focused on the elastic moduli, Poisson's ratio, the indentation size effect (ISE), and the bow‐in parameter. This part laid out the foundation to investigate the intersection of these elastoplastic properties with hardness and crack resistance as a function of NWM FS. Results showed that: (i) the Young's, bulk, and shear moduli increased with modifier FS, whereas Poisson's ratio did not trend with FS; (ii) the alkali glasses had a significantly higher magnitudes of ISE compared to the AE glasses; and (iii) the bow‐in parameter was load dependent and decreased with modifier FS at the highest indentation load.

     
    more » « less
  2. Abstract

    The quantum of research in the area of supercapacitors is typically focused on the electrode materials. As such, there are many opportunities for the optimization of the other components, such as the separators, to further increase the power, efficiency, and longevity of supercapacitors. To contribute to this field of research, we present an innovative alternative for the fabrication of separators; using polymer/ceramic composites (PCC) based on polyvinylidene fluoride (PVDF) and polypropylene (PPG) mixed with different alkaline earth metal‐based titanates (eg barium, calcium, and strontium). ThePCCseparators were prepared via phase inversion precipitation technique, a feasible and scalable method for the fabrication of these composites. Different additives were used to modulate the porosity and thus, improve the charge transfer rates. Then, a heating process ensured a uniform organization of the composites. Furthermore, we tested the effect of thermally annealing the ceramics on the separators’ performance. The precursor materials and thePCC's were extensively characterized by means of X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical, mechanical, and dielectric properties of thePCC's were measured and compared to common commercial separators used today. Results suggest that thermal treatment improves tensile strength of the separators by at least ca. 60% without compromising the similar electrochemical profile to the commercial separators (44.52 ± 2.82 Ω vs 67.65 ± 29.01 Ω). Lastly, all of the fabricatedPCC's showed higher dielectric constants (4.52 in average for the as prepared separators and 2.99 for the heatedPCC's) than the polymer based commercial separators (2.2).

     
    more » « less
  3. Abstract

    The field strength (FS) effect of six different network modifiers on the elastoplastic properties of aluminoborosilicate glasses was explored using a volumetric recovery study. This work, in conjunction with Part I, explored the intersection of hardness, crack resistance, and other physical properties with glass elasticity. Results showed that (1) the elastic volume fraction decreased with FS for both the alkali and alkaline earth (AE) glasses; (2) the Poisson's ratio did not trend with pile‐up or shear flow volume fraction; (3) the elastic‐to‐plastic deformation ratio increased with applied load and decreased with modifier FS for both the alkali and AE glasses; and (4) an increase in plasticity correlated with increased hardness, crack resistance, and elastic moduli.

     
    more » « less
  4. Abstract

    Although the interactions among glass formers and modifiers, for example, connectivity and charge distribution, have been studied extensively in oxide glasses, the impact of a particular modifier species on the mechanical performance of aluminoborosilicate (ABS) glasses is not well understood. This work compares the indentation properties of six ABS glasses, each of which contains a different network modifier (NWM) with varying field strength (FS). Three alkali and three alkaline earth ABS glasses were designed with low NWM content and [NWM] ≈ [Al2O3], to test the modifier FS effect at low concentrations and to maximize three‐coordinated boron. It has been found that both hardness and crack resistance increase with increasing FS in these ABS systems, which is surprising in the context of historical reports. Using11B,27Al, and29Si solid‐state nuclear magnetic resonance, this work provides evidence of how charge distributions differ as a function of NWM species, and how this relates to the observed indentation behaviors.

     
    more » « less
  5. Abstract

    Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.

     
    more » « less