skip to main content

Title: Structure and glass transition temperatures of tellurite glasses
Tellurite glasses, made from the conditional glass former TeO2, show potential for use in optical applications. Alkali and alkaline earth tellurite glasses, along with single component, rapidly cooled, TeO2 are reported and studied here. Thermal properties of boron, potassium, lithium, sodium, rubidium, cesium, barium, and strontium tellurites were obtained via differential scanning calorimetry and related to structural changes observed using Raman spectroscopy. Additionally, coordination numbers of barium and strontium tellurites versus amount of modifier are also calculated. By understanding the thermal properties and coordination numbers of alkali and alkaline earth tellurites, the goal is to better elucidate the structure of amorphous TeO2.
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1746230
Publication Date:
NSF-PAR ID:
10144284
Journal Name:
Physics and chemistry of glasses
Volume:
61
Issue:
1
Page Range or eLocation-ID:
21-26
ISSN:
0031-9090
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane (“Tris”, or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature—a key advantage being the absence of dissolved alkali/alkaline earth cations ( i.e. Na + or Ca 2+ ) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris–HCl vs. Tris–HNO 3 ), buffer concentration (0.01 M to 0.5 M), and pH (7–9). The results have been discussed in reference to previous studies on this topic and the following conclusionsmore »have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris–boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior.« less
  2. In a simple, one-step reaction, we have synthesized a pyridoxal-based chemosensor by reacting tris(hydroxymethyl)aminomethane (TRIS) together with pyridoxal hydrochloride to yield a Schiff-base ligand that is highly selective for the detection of Zn( ii ) ion. Both the ligand and the Zn( ii ) complex have been characterized by 1 H & 13 C NMR, ESI-MS, CHN analyses, and X-ray crystallography. The optical properties of the synthesized ligand were investigated in an aqueous buffer solution and found to be highly selective and sensitive toward Zn( ii ) ion through a fluorescence turn-on response. The competition studies reveal the response for zinc ion is unaffected by all alkali and alkaline earth metals; and suppressed by Cu( ii ) ion. The ligand itself shows a weak fluorescence intensity (quantum yield, Φ = 0.04), and the addition of zinc ion enhanced the fluorescence intensity 12-fold (quantum yield, Φ = 0.48). The detection limit for zinc ion was 2.77 × 10 −8 M, which is significantly lower than the WHO's guideline (76.5 μM). Addition of EDTA to a solution containing the ligand–Zn( ii ) complex quenched the fluorescence, indicating the reversibility of Zn( ii ) binding. Stoichiometric studies indicated the formation of a 2 : 1more »L 2 Zn complex with a binding constant of 1.2 × 10 9 M −2 (±25%). The crystal structure of the zinc complex shows the same hydrated L 2 Zn complex, with Zn( ii ) ion binding with an octahedral coordination geometry. We also synthesized the copper( ii ) complex of the ligand, and the crystal structure showed the formation of a 1 : 1 adduct, revealing 1-dimensional polymeric networks with octahedral coordinated Cu( ii ). The ligand was employed as a sensor to detect zinc ion in HEK293 cell lines derived from human embryonic kidney cells grown in tissue culture which showed strong luminescence in the presence of Zn( ii ). We believe that the outstanding turn-on response, sensitivity, selectivity, lower detection limit, and reversibility toward zinc ion will find further application in chemical and biological science.« less
  3. Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space ofmore »lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions ( r ∼ 2.1 on average). It is also shown that the metal incorporation ( e.g. , doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS.« less
  4. Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ . Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with alkali or alkaline earth chlorides, denoted XCl n , can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCl n and the Al : XCl n molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCl n precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.
  5. Theory for one and two atom interactions is developed for the case when the atoms have a Rydberg electron attached to a hyper- fi ne split core state, a situation relevant for some rare earth and some alkaline earth atoms proposed for experiments on Rydberg-Rydberg in- teractions. For the rare earth atoms, the core electrons can have a very substantial total angular momentum, J, and a non-zero nuclear spin, I. For alkaline earth atoms there is a single, s, core electron whose spin can couple to a non-zero nuclear spin for odd isotopes. The hyper fine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the un- perturbed Rydberg series of the alkali atoms, series perturbations and near degeneracies from the different parity states could lead to quali- tatively different behavior for single atom Rydberg properties (polariz- ability, Zeeman mixing and splitting, etc) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).