skip to main content


Title: Electron temperature of the solar wind

Solar wind provides an example of a weakly collisional plasma expanding from a thermal source in the presence of spatially diverging magnetic-field lines. Observations show that in the inner heliosphere, the electron temperature declines with the distance approximately asTe(r)r0.3r0.7, which is significantly slower than the adiabatic expansion lawr4/3. Motivated by such observations, we propose a kinetic theory that addresses the nonadiabatic evolution of a nearly collisionless plasma expanding from a central thermal source. We concentrate on the dynamics of energetic electrons propagating along a radially diverging magnetic-flux tube. Due to conservation of their magnetic moments, the electrons form a beam collimated along the magnetic-field lines. Due to weak energy exchange with the background plasma, the beam population slowly loses its energy and heats the background plasma. We propose that no matter how weak the collisions are, at large enough distances from the source a universal regime of expansion is established where the electron temperature declines asTe(r)r2/5. This is close to the observed scaling of the electron temperature in the inner heliosphere. Our first-principle kinetic derivation may thus provide an explanation for the slower-than-adiabatic temperature decline in the solar wind. More broadly, it may be useful for describing magnetized collisionless winds from G-type stars.

 
more » « less
Award ID(s):
1707272
NSF-PAR ID:
10144506
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
17
ISSN:
0027-8424
Page Range / eLocation ID:
p. 9232-9240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  2. Abstract

    The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a0.03gcm3TMPTA foam target with a focused intensityIl=9.5×1017Wcm2. A third harmonic (λprobe266nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.

     
    more » « less
  3. Abstract

    The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastableH(3Δ1)state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-livedQ(3Δ2)state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to theC(1Π1)state, which allows for efficient population transfer between the ground stateX(1Σ+)and theQstate viaXCQStimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, theXCtransition dipole moment, and branching ratios of decays from theCstate.

     
    more » « less
  4. Abstract

    One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, thez-axis) with frequencyω0due to absorption of low-power microwaves of frequencyω0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that componentISzof spin current vector(ISx(t),ISy(t),ISz)ω0is time-independent whileISx(t)andISy(t)oscillate harmonically in time with a single frequencyω0whereas pumped charge current is zeroI0in the same adiabaticω0limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spinISα(t)and chargeI(t) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiplesNω0of the driving frequencyω0. The cutoff order of such high harmonics increases with SOC strength, reachingNmax11in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoffNmax25can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.

     
    more » « less
  5. Abstract

    Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factorγ≳ 3σ(here,σis the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time istaccγηrec1ωc120γωc1, whereηrec≃ 0.06 is the inflow speed in units of the speed of light andωc=eB0/mcis the gyrofrequency in the upstream magnetic field. They leave the region of active energization aftertesc, when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measuretescin our simulations and find thattesctaccforσ≳ few. This leads to a universal (i.e.,σ-independent) power-law spectrumdNfree/dγγ1for the particles undergoing active acceleration, anddN/dγγ2for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources.

     
    more » « less