Abstract The sensitivity of urban canopy air temperature ( ) to anthropogenic heat flux ( ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of (where represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median is around 0.01 over the CONUS. Besides the direct effect of on , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and is mostly controlled by the direct effect in summer. In winter, becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with . The spatial and temporal (both seasonal and diurnal) variability of as well as the nonlinear response of to are strongly related to the variability of , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models.
more »
« less
Formation and evolution of post-solitons following a high intensity laser-plasma interaction with a low-density foam target
Abstract The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a TMPTA foam target with a focused intensity . A third harmonic ( nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.
more »
« less
- Award ID(s):
- 1903098
- PAR ID:
- 10362639
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Plasma Physics and Controlled Fusion
- Volume:
- 63
- Issue:
- 7
- ISSN:
- 0741-3335
- Page Range / eLocation ID:
- Article No. 074001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
-
Abstract We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of the , , and electronic states. Analyzing the rotational substructure, we identify the highly mixed state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays.more » « less
-
Abstract We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that is such that in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition.more » « less
-
Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect (3.7σsignificance) in the companion’s atmosphere and measure and after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure and for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.more » « less
An official website of the United States government
