skip to main content


Title: CARNA with Artificial Intelligence - Use of Machine Learning for a Proton Imaging
Protons deposit the majority of their energy at the end of their lifetimes, characterized by a Bragg peak. This makes proton therapy a viable way to target cancerous tissue while minimizing damage to surrounding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in tumor imaging is needed. An approximate uncertainty of ±3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. An imaging system utilizing protons has the potential to eliminate that inaccuracy. This study focuses on developing a proof of concept proton-imaging detector built with a high-density glass scintillator.  more » « less
Award ID(s):
1407404
NSF-PAR ID:
10144794
Author(s) / Creator(s):
Date Published:
Journal Name:
SPIE Medical Imaging Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose

    We consider the following scenario: A radiotherapy clinic has a limited number of proton therapy slots available each day to treat cancer patients of a given tumor site. The clinic's goal is to minimize the expected number of complications in the cohort of all patients of that tumor site treated at the clinic, and thereby maximize the benefit of its limited proton resources.

    Methods

    To address this problem, we extend the normal tissue complication probability (NTCP) model–based approach to proton therapy patient selection to the situation of limited resources at a given institution. We assume that, on each day, a newly diagnosed patient is scheduled for treatment at the clinic with some probability and with some benefit from protons over photons, which is drawn from a probability distribution. When a new patient is scheduled for treatment, a decision for protons or photons must be made, and a patient may wait only for a limited amount of time for a proton slot becoming available. The goal is to determine the thresholds for selecting a patient for proton therapy, which optimally balance the competing goals of making use of all available slots while not blocking slots with patients with low benefit. This problem can be formulated as a Markov decision process (MDP) and the optimal thresholds can be determined via a value‐policy iteration method.

    Results

    The optimal thresholds depend on the number of available proton slots, the average number of patients under treatment, and the distribution of values. In addition, the optimal thresholds depend on the current utilization of the facility. For example, if one proton slot is available and a second frees up shortly, the optimal threshold is lower compared to a situation where all but one slot remain blocked for longer.

    Conclusions

    MDP methodology can be used to augment current NTCP model–based patient selection methods to the situation that, on any given day, the number of proton slots is limited. The optimal threshold then depends on the current utilization of the proton facility. Although, the optimal policy yields only a small nominal benefit over a constant threshold, it is more robust against variations in patient load.

     
    more » « less
  2. Proton beam therapy is a unique form of radiotherapy that utilizes protons to treat cancer by irradiating cancerous tumors, while avoiding unnecessary radiation exposure to surrounding healthy tissues. Real-time imaging of the proton beam can make this form of therapy more precise and safer for the patient during delivery. The use of Compton cameras is one proposed method for the real-time imaging of prompt gamma rays that are emitted by the proton beams as they travel through a patient’s body. Unfortunately, some of the Compton camera data is flawed and the reconstruction algorithm yields noisy and insufficiently detailed images to evaluate the proton delivery for the patient. Previous work used a deep residual fully connected neural network. The use of recurrent neural networks (RNNs) has been proposed, since they use recurrence relationships to make potentially better predictions. In this work, RNN architectures using two different recurrent layers are tested, the LSTM and the GRU. Although the deep residual fully connected neural network achieves over 75% testing accuracy and our models achieve only over 73% testing accuracy, the simplicity of our RNN models containing only 6 hidden layers as opposed to 512 is a significant advantage. Importantly in a clinical setting, the time to load the model from disk is significantly faster, potentially enabling the use of Compton camera image reconstruction in real-time during patient treatment. 
    more » « less
  3. Quantitative mapping of oxygen tension (pO2), noninvasively, could potentially be beneficial in cancer and stroke therapy for monitoring therapy and predicting response to certain therapies. Intracellular pO2measurements may also prove useful in tracking the health of labeled cells and understanding the dynamics of cell therapy in vivo. Proton Imaging of Siloxanes to map Tissue Oxygenation Levels (PISTOL) is a relatively new oximetry technique that measures the T1of administered siloxanes such as hexamethyldisiloxane (HMDSO), to map the tissue pO2at various locations with a temporal resolution of 3.5 minutes. We have now developed a siloxane‐selective Look‐Locker imaging sequence equipped with an echo planar imaging (EPI) readout to accelerate PISTOL acquisitions. The new tissue oximetry sequence, referred to as PISTOL‐LL, enables the mapping of HMDSO T1, and hence tissue pO2in under one minute. PISTOL‐LL was tested and compared with PISTOL in vitro and in vivo. Both sequences were used to record dynamic changes in pO2of the rat thigh muscle (healthy Fischer rats,n = 6), and showed similar results (P > 0.05) as the other, with each sequence reporting a significant increase in pO2(P < 0.05) under hyperoxia compared with steady state normoxia. This study demonstrates the ability of the new sequence in rapidly and accurately mapping the pO2changes and accelerating quantitative1H MR tissue oximetry by approximately 4‐fold. The faster PISTOL‐LL technique could enable dynamic1H oximetry with higher temporal resolution for assesing tissue oxygentation and tracking the health of transplanted cells labeled with siloxane‐based probes. With minor modifications, this sequence can be useful for19F applications as well.

     
    more » « less
  4. Abstract Purpose

    One standard method, proton resonance frequency shift, for measuring temperature using magnetic resonance imaging (MRI), in MRI‐guided surgeries, fails completely below the freezing point of water. Because of this, we have developed a new methodology for monitoring temperature with MRI below freezing. The purpose of this paper is to show that a strong temperature dependence of the nuclear relaxation timeT1in soft silicone polymers can lead to temperature‐dependent changes of MRI intensity acquired withT1weighting. We propose the use of silicone filaments inserted in tissue for measuring temperature during MRI‐guided cryoablations.

    Methods

    The temperature dependence ofT1in bio‐compatible soft silicone polymers was measured using nuclear magnetic resonance spectroscopy and MRI. Phantoms, made of bulk silicone materials and put in an MRI‐compatible thermal container with dry ice, allowed temperature measurements ranging from –60°C to + 20°C.T1‐weighted gradient echo images of the phantoms were acquired at spatially uniform temperatures and with a gradient in temperature to determine the efficacy of using these materials as temperature indicators in MRI. Ex vivo experiments on silicone rods, 4 mm in diameter, inserted in animal tissue were conducted to assess the practical feasibility of the method.

    Results

    Measurements of nuclear relaxation times of protons in soft silicone polymers show a monotonic, nearly linear, change with temperature (R2 > 0.98) and have a significant correlation with temperature (Pearson'sr > 0.99,p < 0.01). Similarly, the intensity of the MR images in these materials, taken with a gradient echo sequence, are also temperature dependent. There is again a monotonic change in MRI intensity that correlates well with the measured temperature (Pearson'sr < ‐0.98 andp < 0.01). The MRI experiments show that a temperature change of 3°C can be resolved in a distance of about 2.5 mm. Based on MRI images and external sensor calibrations for a sample with a gradient in temperature, temperature maps with 3°C isotherms are created for a bulk phantom. Experiments demonstrate that these changes in MRI intensity with temperature can also be seen in 4 mm silicone rods embedded in ex vivo animal tissue.

    Conclusions

    We have developed a new method for measuring temperature in MRI that potentially could be used during MRI‐guided cryoablation operations, reducing both procedure time and cost, and making these surgeries safer.

     
    more » « less
  5. Proton therapy has potential for high precision dose delivery, provided that high accuracy is achieved in imaging. Currently, X-ray based techniques are preferred for imaging prior to proton therapy, and the stopping power conversion tables cause irreducible uncertainty. The proposed proton imaging methods aim to reduce this source of error, as well as lessen the radiation exposure of the patient. CARNA is a homogeneous compact calorimeter that utilizes a novel high density scintillating glass as an active medium. The compact design and unique geometry of the calorimeter eliminate the need for a tracker system and allow it to be directly attached to a gantry. Thus, giving CARNA potential to be used for insitu imaging during the hadron therapy, possibly to detect the prompt gammas. The novel glass development and the traditional image reconstruction studies performed with CARNA have been reported before. However, to improve the image reconstruction, a machine learning implementation with CARNA is reported. A proof-of-concept Artificial Neural Network, is shown to efficiently predict the density and the shape of the tumors. 
    more » « less