skip to main content


Search for: All records

Award ID contains: 1407404

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Protons deposit the majority of their energy at the end of their lifetimes, characterized by a Bragg peak. This makes proton therapy a viable way to target cancerous tissue while minimizing damage to surrounding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in tumor imaging is needed. An approximate uncertainty of ±3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. An imaging system utilizing protons has the potential to eliminate that inaccuracy. This study focuses on developing a proof of concept proton-imaging detector built with a high-density glass scintillator. 
    more » « less