A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a significant impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore's law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage components to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which profoundly impacts the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy, allowing for better hardware utilization and, ultimately, better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware and the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control. 
                        more » 
                        « less   
                    
                            
                            Optimal Column Layout for Hybrid Workloads
                        
                    
    
            Data-intensive analytical applications need to support both efficient reads and writes. However, what is usually a good data layout for an update-heavy workload, is not well-suited for a read-mostly one and vice versa. Modern analytical data systems rely on columnar layouts and employ delta stores to inject new data and updates. We show that for hybrid workloads we can achieve close to one order of magnitude better performance by tailoring the column layout design to the data and query workload. Our approach navigates the possible design space of the physical layout: it organizes each column’s data by determining the number of partitions, their corresponding sizes and ranges, and the amount of buffer space and how it is allocated. We frame these design decisions as an optimization problem that, given workload knowledge and performance requirements, provides an optimal physical layout for the workload at hand. To evaluate this work, we build an in-memory storage engine, Casper, and we show that it outperforms state-of-the-art data layouts of analytical systems for hybrid workloads. Casper delivers up to 2.32x higher throughput for update-intensive workloads and up to 2.14x higher throughput for hybrid workloads. We further show how to make data layout decisions robust to workload variation by carefully selecting the input of the optimization. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1850202
- PAR ID:
- 10144830
- Publisher / Repository:
- PVLDB
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 12
- Issue:
- 13
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 2393-2407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A key design decision for data systems is whether they follow the row-store or the column-store paradigm. The former supports transactional workloads, while the latter is better for analytical queries. This decision has a profound impact on the entire data system architecture. The multiple-decadelong journey of these two designs has led to a new family of hybrid transactional/analytical processing (HTAP) architectures. Several efforts have been proposed to reap the benefits of both worlds by proposing systems that maintain multiple copies of data (in different physical layouts) and convert them into the desired layout as required. Due to data duplication, the additional necessary bookkeeping, and the cost of converting data between different layouts, these systems compromise between efficient analytics and data freshness. We depart from existing designs by proposing a radically new approach. We ask the question: “What if we could access any layout and ship only the relevant data through the memory hierarchy by transparently converting rows to (arbitrary groups of) columns?” To achieve this functionality, we capitalize on the reinvigorated trend of hardware specialization (that has been accelerated due to the tapering of Moore’s law) to propose Relational Fabric, a near-data vertical partitioner that allows memory or storage component to perform on-the-fly transparent data transformation. By exposing an intuitive API, Relational Fabric pushes vertical partitioning to the hardware, which has a profound impact on the process of designing and building data systems. (A) There is no need for data duplication and layout conversion, making HTAP systems viable using a single layout. (B) It simplifies the memory and storage manager that needs to maintain and update a single data layout. (C) It reduces unnecessary data movement through the memory hierarchy allowing for better hardware utilization, and ultimately better performance. In this paper, we present Relational Fabric for both memory and storage. We present our initial results on Relational Fabric for in-memory systems and discuss the challenges of building this hardware, as well as the opportunities it brings for simplicity and innovation in the data system software stack, including physical design, query optimization, query evaluation, and concurrency control.more » « less
- 
            null (Ed.)Hybrid Transactional and Analytical Processing (HTAP) systems have become popular in the past decade. HTAP systems allow running transactional and analytical processing workloads on the same data and hardware. As a result, they suffer from workload interference. Despite the large body of existing work in HTAP systems and architectures, none of the existing work has systematically analyzed workload interference for HTAP systems. In this work, we characterize workload interference for HTAP systems. We show that the OLTP throughput drops by up to 42% due to sharing the hardware resources. Partitioning the last-level cache (LLC) among the OLTP and OLAP workloads can significantly improve the OLTP throughput without hurting the OLAP throughput. The OLAP throughput is significantly reduced due to sharing the data. The OLAP execution time is exponentially increased if the OLTP workload generates fresh tuples faster than the HTAP system propagates them. Therefore, in order to minimize the workload interference, HTAP systems should isolate the OLTP and OLAP workloads in the shared hardware resources and should allocate enough resources to fresh tuple propagation to propagate the fresh tuples faster than they are generated.more » « less
- 
            null (Ed.)Modern video data management systems store videos as a single encoded file, which significantly limits possible storage level optimizations. We design, implement, and evaluate TASM, a new tile-based storage manager for video data. TASM uses a feature in modern video codecs called "tiles" that enables spatial random access into encoded videos. TASM physically tunes stored videos by optimizing their tile layouts given the video content and a query workload. Additionally, TASM dynamically tunes that layout in response to changes in the query workload or if the query workload and video contents are incrementally discovered. Finally, TASM also produces efficient initial tile layouts for newly ingested videos. We demonstrate that TASM can speed up subframe selection queries by an average of over 50% and up to 94%. TASM can also improve the throughput of the full scan phase of object detection queries by up to 2×.more » « less
- 
            Resource flexing is the notion of allocating resources on-demand as workload changes. This is a key advantage of Virtualized Network Functions (VNFs) over their non-virtualized counterparts. However, it is difficult to balance the timeliness and resource efficiency when making resource flexing decisions due to unpredictable workloads and complex VNF processing logic. In this work, we propose an Elastic resource flexing system for Network functions VIrtualization (ENVI) that leverages a combination of VNF-level features and infrastructure-level features to construct a neural-network-based scaling decision engine for generating timely scaling decisions. To adapt to dynamic workloads, we design a window-based rewinding mechanism to update the neural network with emerging workload patterns and make accurate decisions in real time. Our experimental results for real VNFs (IDS Suricata and caching proxy Squid) using workloads generated based on real-world traces, show that ENVI provisions significantly fewer (up to 26%) resources without violating service level objectives, compared to commonly used rule-based scaling policies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    