null
                            (Ed.)
                        
                    
            
                            Hybrid Transactional and Analytical Processing (HTAP) systems suffer from workload interference at the software and hardware level. We examine workload interference for HTAP systems and highlight investigation directions to mitigate the interference. We use the popular two-copy HTAP architecture. The OLTP and OLAP sides are independent components with their own private copies of the data. The OLTP side is a row-store, whereas the OLAP side is a column-store. The OLTP and OLAP sides are connected by means of an intermediate data structure, delta, that keeps track of the fresh tuples that are generated by the OLTP side, but not yet transferred to the OLAP side. OLTP transactions register their modifications to delta before committing. OLAP queries first prop- agate fresh tuples from the OLTP side to the OLAP side and then perform query execution over the data at the OLAP side. HTAP systems suffer from interference at both the software and hardware level. Software-level interference depends on the OLTP and fresh tuple propagation throughput. In order to minimize interference, HTAP systems should ensure that fresh tuple propagation throughput is greater than the throughput of the OLTP transactions that generate the fresh tuples. Hardware-level interference depends on the demand for shared resources such as LLC and memory bandwidth by the OLTP and OLAP workloads. HTAP systems should isolate the OLTP and OLAP workloads in the shared resources and use micro-architectural re- source allocation policies that assign the optimal amount of re- sources to OLTP and OLAP workloads to minimize hardware-level interference. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    