This paper proposes a novel flexible pneumatic valve adapter that seeks inspiration from vascular systems found in nature. Evolved vascular systems, such as the human cardiovascular system, pump fluid through a complex system composed of a single reservoir/pump. These systems regulate flow by systematically closing and opening valves appropriately through soft biological material constriction. The proposed pneumatic valve emulates this with two concentric flexible tubes with a single hole on the inner tube and patterned holes on the outer tube. This allows it to decrease the quantity of tubes and valves required for pneumatically actuated soft robots, with the trade-off being increased motion of the valve spool (the inner tube). Previous versions of this adapter used rigid members which decreased the number of tubes tethering the robot to a pressure source, but also hindered the soft robotic nature and movement. This adapter utilizes flexible materials to minimize the valve’s effect on the robot’s range of motion. The tubes have holes that are patterned by custom design determined by the needs of the soft robot with which it is to be used. The inner tube can be moved rotationally or translationally within the outer tube to align with designated holes to pressurize and depressurize chambers in a soft robot with only a single lightweight valve.
more »
« less
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
Abstract This paper presents the development of an origami-inspired support system (the OriGuide) that enables the insertion of flexible instruments using medical robots. Varying parameters of a triangulated cylindrical origami pattern were combined to create an effective highly compressible anti-buckling system that maintains a constant inner diameter for supporting an instrument and a constant outer diameter throughout actuation. The proposed origami pattern is composed of two repeated patterns: a bistable pattern to create support points to mitigate flexible shaft buckling and a monostable pattern to enable axial extension and compression of the support system. The origami-based portion of the device is combined with two rigid mounts for interfacing with the medical robot. The origami-based portion of the device is fabricated from a single sheet of polyethylene terephthalate. The length, outer diameter, and inner diameter that emerge from the fold pattern can be customized to accommodate various robot designs and flexible instrument geometries without increasing the part count. The support system also adds protection to the instrument from external contamination.
more »
« less
- Award ID(s):
- 1663345
- PAR ID:
- 10144955
- Date Published:
- Journal Name:
- Journal of Mechanisms and Robotics
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 1942-4302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Origami-inspired engineering has enabled intelligent materials and structures to process and react to environmental stimuli. However, it is challenging to achieve complete sense-decide-act loops in origami materials for autonomous interaction with environments, mainly due to the lack of information processing units that can interface with sensing and actuation. Here, we introduce an integrated origami-based process to create autonomous robots by embedding sensing, computing, and actuating in compliant, conductive materials. By combining flexible bistable mechanisms and conductive thermal artificial muscles, we realize origami multiplexed switches and configure them to generate digital logic gates, memory bits, and thus integrated autonomous origami robots. We demonstrate with a flytrap-inspired robot that captures ‘living prey’, an untethered crawler that avoids obstacles, and a wheeled vehicle that locomotes with reprogrammable trajectories. Our method provides routes to achieve autonomy for origami robots through tight functional integration in compliant, conductive materials.more » « less
-
Abstract Fully soft bistable mechanisms have shown extensive applications ranging from soft robotics, wearable devices, and medical tools, to energy harvesting. However, the lack of design and fabrication methods that are easy and potentially scalable limits their further adoption into mainstream applications. Herein, a top–down planar approach is presented by introducing Kirigami‐inspired engineering combined with a pre‐stretching process. Using this method, Kirigami‐Pre‐stretched Substrate‐Kirigami trilayered precursors are created in a planar manner; upon release, the strain mismatch—due to the pre‐stretching of substrate—between layers will induce an out‐of‐plane buckling to achieve targeted 3D bistable structures. By combining experimental characterization, analytical modeling, and finite element simulation, the effect of the pattern size of Kirigami layers and pre‐stretching on the geometry and stability of resulting 3D composites is explored. In addition, methods to realize soft bistable structures with arbitrary shapes and soft composites with multistable configurations are investigated, which may encourage further applications. This method is demonstrated by using bistable soft Kirigami composites to construct two soft machines: (i) a bistable soft gripper that can gently grasp delicate objects with different shapes and sizes and (ii) a flytrap‐inspired robot that can autonomously detect and capture objects.more » « less
-
Ring motors are electric machines that are typically characterized by having a hollow rotor / stator, a small difference between the inner and outer radii, and a large outer diameter relative to the axial length. The hollow portion of the ring motor allows integrating loads, such as an aerial or marine propeller, enabling power-dense systems. This paper reviews integrated ring motor designs from literature across different applications. Based on this review, first, design trends and performance parameters are identified and compared with conventional radial flux machines. Next, the bearing challenges posed by the unique form-factors of these machines are identified and approaches to realize bearings are presented. Finally, a research outlook is presented that identifies the benefits of applying multi-physics optimization, additive manufacturing, and bearingless machine technology to realize improved integrated ring motor designs.more » « less
-
SUMMARY To improve the accessibility of robotics, we propose a design and fabrication strategy to build low-cost electromechanical systems for robotic devices. Our method, based on origami-inspired cut-and-fold and E-textiles techniques, aims at minimizing the resources for robot creation. Specifically, we explore techniques to create robots with the resources restricted to single-layer sheets (e.g., polyester film) and conductive sewing threads. To demonstrate our strategy’s feasibility, these techniques are successfully integrated into an electromechanical oscillator (about 0.40 USD), which can generate electrical oscillation under constant-current power and potentially be used as a simple robot controller in lieu of additional external electronics.more » « less
An official website of the United States government

