A multi-phase (MP) combined winding design procedure for bearingless machines is proposed and developed. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and another for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements for the MP combined winding. A sequence of winding design steps is proposed and used to design example MP combined windings.
more »
« less
A Review of Ring Motors with Integrated Loads
Ring motors are electric machines that are typically characterized by having a hollow rotor / stator, a small difference between the inner and outer radii, and a large outer diameter relative to the axial length. The hollow portion of the ring motor allows integrating loads, such as an aerial or marine propeller, enabling power-dense systems. This paper reviews integrated ring motor designs from literature across different applications. Based on this review, first, design trends and performance parameters are identified and compared with conventional radial flux machines. Next, the bearing challenges posed by the unique form-factors of these machines are identified and approaches to realize bearings are presented. Finally, a research outlook is presented that identifies the benefits of applying multi-physics optimization, additive manufacturing, and bearingless machine technology to realize improved integrated ring motor designs.
more »
« less
- PAR ID:
- 10569466
- Publisher / Repository:
- IEEE Energy Conversion Congress and Exposition
- Date Published:
- Subject(s) / Keyword(s):
- Ring motors, gearless drives, marine thrusters, bearingless motors, machine design, windings, torque density, power density, efficiency.
- Format(s):
- Medium: X
- Location:
- Phoenix, AZ
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A generalized multi-phase (MP) combined winding design procedure for bearingless machines is proposed and devel- oped. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and an- other for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings, and is applicable to all radial-flux bearingless machines. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements. A sequence of winding design steps is proposed and used to design example MP combined windings. Experimental validation is provided using a six-phase bearingless induction machine prototype.more » « less
-
This paper studies the force creation capabilities of active magnetic bearings (AMBs) and bearingless motors from the perspective of multiple airgap space harmonics/pole-pairs. This approach is analytic-based and is useful in explaining the underlying physics of the machine and conducting force capacity analysis for different numbers of phases/poles. The presented per unit (p.u.) model makes the force capacity results applicable to any motor dimensions and peak airgap field value. An explanation of the force capacity in bearingless motors is provided when only two harmonics are controlled (which is the typical approach in bearingless motor literature) and the relationship between torque, force, and magnetizing field values is identified. Using this relationship, optimal magnetizing field values for maximum torque-force capability are identified, which is useful to consider when designing a bearingless motor. This paper extends the force capacity analysis to bearingless motors with multiple (more than two) controllable space harmonics and proposes that force enhancement can be achieved through the control of the magnitudes and angles of these harmonics. Results show that potential force enhancement of over 40% in bearingless machines can be achieved when controlling four airgap harmonics as opposed to two harmonics. These results suggest that being able to control multiple harmonics can yield high performance designs.more » « less
-
A significant challenge in the design of fully superconducting (SC) machines is managing ac losses in the SC armature. Recent developments in MgB2 superconducting conductors promise low ac loss conductors suitable for fully SC machines. This paper presents an optimized design targeting low losses and low weight for a 10-MW fully SC generator suitable for offshore wind turbine applications. An outer rotor air-core machine topology is investigated to optimize the design with low weight and low losses. An active shielding concept is used to minimize the pole count without adding excessive weight. This enables a reduction in the electrical frequency for a practical design by a factor of 4 to 5 over current designs, driving ac losses and active components weight lower by an order of magnitude. In this study, armature current is varied to control electrical and magnetic loading in order to minimize losses. A pole count study is conducted to identify the design space suitable for MW scale machines. A comparison is made between active shield, passive shield and a hybrid topology to address the benefits of an active shield for weight reduction. Results suggest that low-pole-count designs with MgB2 conductors will enable machines with less than 1 kW of ac losses.more » « less
-
Abstract Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing‐associated barriers remain a critical impediment to emerging applications that demand high‐density arrays of hollow, high‐aspect‐ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with “ex situ direct laser writing (esDLW)” is presented to enable new classes of MNAs for fluidic microinjections. Experimental results foresDLW‐based 3D printing of arrays of high‐aspect‐ratio microneedles—with 30 µm inner diameters, 50 µm outer diameters, and 550 µm heights, and arrayed with 100 µm needle‐to‐needle spacing—directly onto DLP‐printed capillaries reveal uncompromised fluidic integrity at the MNA‐capillary interface during microfluidic cyclic burst‐pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high‐aspect‐ratio, high‐density, hollow MNAs could hold unique promise for biomedical microinjection applications.more » « less
An official website of the United States government

