skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Digit-Nanometer Capacitive-Gap Transduced Micromechanical Disk Resonators
Single-digit-nanometer electrode-to-resonator gaps have enabled 200-MHz radial-contour mode polysilicon disk resonators with motional resistance Rx as low as 144W while still posting Q’s exceeding 10,000, all with only 2.5V dc-bias. The demonstrated gap spacings down to 7.98nm are the smallest to date for upper-VHF micromechanical resonators and fully capitalize on the fourth power dependence of motional resistance on gap spacing. High device yield and ease of measurement debunk popular prognosticated pitfalls often associated with tiny gaps, e.g., tunneling, Casimir forces, low yield, none of which appear. The devices, however, are more susceptible to environmental contamination when unpackaged. The tiny motional resistance, together with (Cx/Co)’s up to 1% at 4.7V dc-bias and (Cx/Co)-Q products exceeding 100, propel polysilicon capacitive-gap transduced resonator technology to the forefront of MEMS resonator applications that put a premium on noise performance, such as radar oscillators.  more » « less
Award ID(s):
1809319
PAR ID:
10145362
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Microelectromechanical Systems Conference
Page Range / eLocation ID:
222 to 225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally demonstrate and numerically analyze large arrays of whispering gallery resonators. Using fluorescent mapping, we measure the spatial distribution of the cavity ensemble’s resonances, revealing that light reaches distant resonators in various ways, including while passing through dark gaps, resonator groups, or resonator lines. Energy spatially decays exponentially in the cavities. Our practically infinite periodic array of resonators, with a quality factor (Q) exceeding 107, might impact a new type of photonic ensembles for nonlinear optics and lasers using our cavity continuum that is distributed, while having high-Qresonators as unit cells. 
    more » « less
  2. This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. 
    more » « less
  3. Abstract Numerous recent works have established the potential of various types of metamaterials for simultaneous vibration control and energy harvesting. In this paper, we investigate a weakly nonlinear metamaterial with electromechanical (EM) local resonators coupled to a resistance-inductance shunt circuit, a system with no previous examination in the literature. An analytical solution is developed for the system, using the perturbation method of multiple scales, and validated through direct numerical integration. The resulting linear and nonlinear band structures are used for parametric analysis of the system, focusing on the effect of resonator and shunt circuit parameters on band gap formation and vibration attenuation. This band structure analysis informs further study of the system through wavepacket excitation as well as spectro-spatial analysis. The voltage response of the system is studied through spatial profiles and spectrograms to observe the effects of shunt inductance, nonlinearity, and their interactions. Results describe the impact of adding a shunted inductor, including significant changes to the band structure; multiple methods of tuning band gaps and pass bands of the system; and changes to wave propagation and voltage response. The results demonstrate the flexibility of the proposed metamaterial and its potential for both vibration control and energy harvesting, specifically compared to a previously studied system with resistance-only shunt. 
    more » « less
  4. Elastodynamic metasurfaces composed of surface-mounted resonators show great promise for guided wave control in diverse applications, e.g., seismic and vibration isolation, nondestructive evaluation, or surface acoustic wave devices. In this work, we revisit the well-studied problem of “rod-shaped” resonators coupled to a plate to reveal the relationship between the resonator's resonances and antiresonances obtained under unidirectional harmonic excitation, and the resultant frequency bandgap for S0 Lamb mode propagation once a metasurface is arranged. This relationship is shown to hold true even for non-prismatic resonators, such as those presented in our recent studies, in which we established a systematic resonator design methodology using topology optimization by matching a single resonator's antiresonance with a predefined target frequency. Our present study suggests that considering the waveguide (plate) during the resonator design is not essential and encourages a feasible resonator design approach to achieve wide bandgaps just by customizing a single resonator's resonances and antiresonances. We present a topology optimization design methodology for resonators that drive resonances away from antiresonances, i.e., a resonance gap enhancement, yielding a broadband S0 mode bandgap while ensuring the desired bandgap formation by matching antiresonances with a target frequency. The transmission loss of metasurfaces composed with topology-optimized resonators is numerically verified, confirming the generation of wider bandgaps compared to resonators designed without resonance gap enhancement and broadening the applicability of locally resonant metasurfaces. 
    more » « less
  5. Abstract The nature of nonlinear magnetoelectric (NLME) effect has been investigated at room-temperature in a single-crystal Zn substituted nickel ferrite. Tuning of the frequency of magnetostatic surface wave (MSSW) modes under an applied pulsed DC electric field/current has been utilized to probe the effect. The frequencies of the modes at 8–20 GHz were found to decrease by ~ 400 MHz for an applied DC powerPof ~ 100 mW and the frequency shift was the same for all of the MSSW modes and linearly proportional toP. A model is proposed for the effect and the NLME phenomenon was interpreted in terms of a reduction in the saturation magnetization due to the DC current. The decrease of magnetization with applied electric power, estimated from data on mode frequency versusP, was − 2.50 G/mW. The frequency tuning efficiency of the MSSW modes due to NLME effects in the ferrite resonator was found to be 4.1 MHz/mW which is an order of magnitude higher than the shift reported for M-type strontium and barium hexaferrite resonators investigated earlier. The spinel ferrite resonator discussed here has the potential for miniature, electric field tunable, planar microwave devices for the 8–20 GHz frequency range. 
    more » « less