skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction
Abstract Hybrid electrodes with improved O2tolerance and capability of CO2conversion into liquid products in the presence of O2are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2molecule and the basic amino group of aniline renders enhanced CO2separation from O2. Loaded with a cobalt phthalocyanine‐based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2in the CO2feed gas. The electrode can still produce CO at an O2/CO2ratio as high as 9:1. Switching to a Sn‐based catalyst, for the first time O2‐tolerant CO2electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm−2in the presence of 5 % O2 more » « less
Award ID(s):
1651717
PAR ID:
10145561
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
27
ISSN:
1433-7851
Page Range / eLocation ID:
p. 10918-10923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For the conversion of CO 2 into fuels and chemical feedstocks, hybrid gas/liquid-fed electrochemical flow reactors provide advantages in selectivity and production rates over traditional liquid phase reactors. However, fundamental questions remain about how to optimize conditions to produce desired products. Using an alkaline electrolyte to suppress hydrogen formation and a gas diffusion electrode catalyst composed of copper nanoparticles on carbon nanospikes, we investigate how hydrocarbon product selectivity in the CO 2 reduction reaction in hybrid reactors depends on three experimentally controllable parameters: (1) supply of dry or humidified CO 2 gas, (2) applied potential, and (3) electrolyte temperature. Changing from dry to humidified CO 2 dramatically alters product selectivity from C 2 products ethanol and acetic acid to ethylene and C 1 products formic acid and methane. Water vapor evidently influences product selectivity of reactions that occur on the gas-facing side of the catalyst by adding a source of protons that alters reaction pathways and intermediates. 
    more » « less
  2. Abstract A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products. 
    more » « less
  3. Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers. 
    more » « less
  4. Abstract Copper (Cu) is the most attractive electrocatalyst for CO2reduction to multi‐carbon (C2+) products with high economic value in considerable amounts. However, the rational design of a structurally stable Cu‐based catalyst that can achieve high activity and stability towards C2+products remain a grand challenge. Here, a highly stable nickel oxygenate/Cu electrocatalyst is developed with abundant NiOOH/Cu interfaces by in situ electrochemical reconstruction. The nickel oxygenate/Cu electrocatalyst achieves a superior Faradaic efficiency of 86.3 ± 3.0% and a record partial current density of 2085 A g−1for C2+products with long‐term stability. In situ experimental and theoretical studies demonstrates that the exceptional performance in generating C2+products is attributed to the presence of the NiOOH/Cu interfaces which increase *CO coverage, lower energy barrier for *CO coupling and stabilize *OCCO simultaneously. This work provides new insights into the rational design of electrocatalysts to achieve stable and efficient electrocatalytic CO2reduction capabilities. 
    more » « less
  5. Abstract The electrochemical conversion of waste CO2into useful fuels and chemical products is a promising approach to reduce CO2emissions; however, several challenges still remain to be addressed. Thus far, most CO2reduction studies use pure CO2as the gas reactant, but CO2emissions typically contain a number of gas impurities, such as nitrogen oxides, oxygen gas, and sulfur oxides. Gas impurities in CO2can pose a significant obstacle for efficient CO2electrolysis because they can influence the reaction and catalyst. This Minireview highlights early examples of CO2reduction studies using mixed‐gas feeds, explores strategies to sustain CO2reduction in the presence of gas impurities, and discusses their implications for future progress in this emerging field. 
    more » « less