skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecosystem for Engineering Design Learning—A Comparative Analysis
Design is a human activity that encompasses a broad array of tasks. In engineering design, individual efforts can be aggregated into teams to maximize collective progress. Effective teamwork, however, requires extensive management, organization and communication. Furthermore, modern challenges encompass complicated multi-disciplinary problems with faster schedules, fewer resources, and greater demands. Design, as a process, can be dissected into characteristic phases. Within each phase, design solutions are gradually developed. Technological tools have prioritized the structured analyses of the detailed and final design phases and have proven to be powerful multipliers for effective design efforts. It has long been the case, however, that major commitments of intangible resources are made as a result of efforts in the less emphasized earlier phases. These commitments and lack of modern toolsets for requirement development and conceptual design activities materialize as major sources of design pitfalls, both in industry and on student design projects. This paper presents a digital Ecosystem for Engineering Design Learning as a comprehensive, yet flexible, framework for capstone design teams. The digital Ecosystem has been developed as a feasible technology to bolster student information management, teamwork, communication, and proficiency in fundamental design principles, and as a technology capable of alleviating rework and process-related productivity interruptions. Its primary innovation, for capstone applications, is the ability to assess design work automatically against the design process, as well as against ABET compliant learning objectives, and provide prompt advisories in case of design oversights. The digital Ecosystem is compared to tools for project management, team communication, and requirement management.  more » « less
Award ID(s):
1632408
PAR ID:
10145845
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
33
Issue:
5
ISSN:
2540-9808
Page Range / eLocation ID:
1499-1512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  2. Ability to effectively work in teams is one of the desired outcomes of engineering and engineering technology programs. Unfortunately, working in teams is still challenging for many students. Rather than contributing to team projects, some students resort to social loafing. Social loafing tends to destroy both teamwork performance and individual learning, especially in solving ill-structured problems, such as design. Furthermore, a bad experience on a past team is a significant concern as it could generate negative feelings toward future team projects. Formation of collaborative teams is a critical first step in team-project-based design courses as team composition directly affects not only teamwork processes and outcomes, but also teamwork skills and experience. This NSF-IUSE sponsored project aims to enhance students’ teamwork experiences and teamwork learning through 1) understanding how to form better student design teams and 2) identifying exercises that will effectively improve team member collaboration. We do this by comparing student characteristics and design task characteristics with the quality of the design team outcome, and examining the resulting correlations. Student characteristics cover six categories: 1) background information, 2) work structure preferences, 3) personality, 4) ability, 5) motivation, and 6) attitude. Task characteristics and design team outcomes are characterized using the Creative Product Semantic Scale. In this article, we present correlations between student/team characteristics and design project outcome, and correlations between task characteristics and design project outcome for 2020-2021 senior design teams at two institutions. For both institutions, we will present correlations between individual student characteristics and team outcome. For one institution, we will also present correlation between team-level characteristics and team outcomes. 
    more » « less
  3. Team building activities are popular interventions during early stages of team development. At RIT, in the multidisciplinary capstone course with an average cohort size of around 350, the students on a particular capstone project team may not be mutually acquainted and thus may benefit from such team building activities. Prior literature has studied the effectiveness of various instructor-directed team building activities on student teams. However, our students are generally eager to spend class time working on their projects and often see in-class activities as a distraction rather than an important part of their growth. Instead, the student teams are now allowed to choose an intervention based on team consensus. In this paper, the relationship between attributes of the chosen intervention and student performance, as measured using a series of AACU VALUE rubrics, was studied using statistical measures. The analysis revealed a statistically significant effect of type of team building activity on teamwork, oral communication, and design & problem solving scores of individual students on the team. Also, a statistically significant effect of location of team building activity (on or off campus) on design & problem solving score was observed. 
    more » « less
  4. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  5. Collaboration is highly emphasized in engineering design education. While it offers various advantages in fostering learning and professional development, it is imperative to acknowledge the adverse factors that can disrupt collaborative efforts. By far, one of the most frequently cited challenges in student teamwork is perceived contribution inequity, which often leads to frustration during collaboration and strains peer relationships. Much work has been done to investigate effective team collaboration. Still, few studies have empirically delved into perceived contribution fairness or contribution equity from the lens of team diversity in engineering design. This study aims to investigate the complex relationship between team diversity (in terms of differences in gender composition and self-perceptions about one’s ability and interests) and contribution equity in student teams. Data were collected from 26 teams in a sophomore-level engineering design course across two semesters. Findings suggest that gender-diverse teams demonstrated a higher tendency for contribution fairness, whereas teams with greater homogeneity in design interests and teamwork preferences were more likely to contribute fairly. These results highlight the importance of a strategic approach to team formation, considering diversity dimensions to promote equitable collaboration in engineering design education. 
    more » « less