skip to main content


Title: Topographic path analysis for modeling dispersal and functional connectivity: calculating topographic distances using the topoDistance R package
Abstract 1. Estimating biologically meaningful geographic distances is essential for research in disciplines ranging from landscape genetics to community ecology. Topographically correcting distances to account for the total overland distance between locations imposed by topographic relief provides one method for calculating geographic distances that account for landscape structure. 2. Here, I present TOPODISTANCE, an R package for calculating shortest topographic distances, weighted topographic paths and topographic least cost paths (LCPs). Topographic distances are calculated by weighting the edges of a graph by the hypotenuse of the horizontal and vertical distances between raster cells and then finding the shortest total path between cells of interest. The package also includes tools for mapping topographic paths and plotting elevation profiles. 3. Examples from a species with moderate dispersal abilities, the western fence lizard, inhabiting a topographically complex landscape, Yosemite National Park (USA), demonstrate that topographic distances can vary significantly from straight-line distances, and topographic LCPs can trace very different routes from LCPs and shortest topographic paths. 4. Topographic paths and distances are broadly useful for modelling geographic isolation resulting from dispersal limitation for organisms that interact with the topographic structure of a landscape during movement and dispersal.  more » « less
Award ID(s):
1845682
NSF-PAR ID:
10145855
Author(s) / Creator(s):
Date Published:
Journal Name:
Methods in ecology and evolution
Volume:
11
Issue:
2
ISSN:
2041-210X
Page Range / eLocation ID:
265-272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Estimating biologically meaningful geographic distances is essential for research in disciplines ranging from landscape genetics to community ecology. Topographically correcting distances to account for the total overland distance between locations imposed by topographic relief provides one method for calculating geographic distances that account for landscape structure.

    Here, I presenttopoDistance, anrpackage for calculating shortest topographic distances, weighted topographic paths and topographic least cost paths (LCPs). Topographic distances are calculated by weighting the edges of a graph by the hypotenuse of the horizontal and vertical distances between raster cells and then finding the shortest total path between cells of interest. The package also includes tools for mapping topographic paths and plotting elevation profiles.

    Examples from a species with moderate dispersal abilities, the western fence lizard, inhabiting a topographically complex landscape, Yosemite National Park (USA), demonstrate that topographic distances can vary significantly from straight‐line distances, and topographic LCPs can trace very different routes from LCPs and shortest topographic paths.

    Topographic paths and distances are broadly useful for modelling geographic isolation resulting from dispersal limitation for organisms that interact with the topographic structure of a landscape during movement and dispersal.

     
    more » « less
  2. null (Ed.)
    Abstract. The presence of bare patches within otherwise vegetated coastal marshes is sometimes considered to be a symptom of marsh dieback and the subsequent loss of important ecosystem services. Here we studied the topographical conditions determining the presence and revegetation of bare patches in three marsh sites with contrasting tidal range, sediment supply, and plant species: the Scheldt estuary (the Netherlands), Venice lagoon (Italy), and Blackwater marshes (Maryland, USA). Based on GIS (geographic information system) analyses of aerial photos and lidar imagery of high resolution (≤2×2 m pixels), we analyzed the topographic conditions under which bare patches occur, including their surface elevation, size, distance from channels, and whether they are connected or not to channels. Our results demonstrate that, for the different marsh sites, bare patches can be connected or unconnected to the channel network and that there is a positive relationship between the width of the connecting channels and the size of the bare patches, in each of the three marsh sites. Further, pixels located in bare patches connected to channels occur most frequently at the lowest elevations and farthest distance from the channels. Pixels in bare patches disconnected from channels occur most frequently at intermediate elevations and distances from channels, and vegetated marshes dominate at highest elevations and shortest distances from channels. In line with previous studies, revegetation in bare patches is observed in only one site with the highest tidal range and highest sediment availability, and it preferentially occurs from the edges of small unconnected bare patches at intermediate elevations and intermediate distances from channels. Although our study is only for three different marsh sites with large variations in local conditions, such as tidal range, sediment availability, and plant species, it suggests that similar topographic conditions determine the occurrence of bare patches. Such insights may inform decision makers on coastal marsh management on where to focus monitoring of early signatures of marsh degradation. 
    more » « less
  3. Abstract

    Large uncertainties in global carbon (C) budgets stem from soil carbon estimates and associated challenges in distributing soil organic carbon (SOC) at local to landscape scales owing to lack of information on soil thickness and controls on SOC storage. Here we show that 94% of the fine-scale variation in total profile SOC within a 1.8 km2semi-arid catchment in Idaho, U.S.A. can be explained as a function of aspect and hillslope curvature when the entire vertical dimension of SOC is measured and fine-resolution (3 m) digital elevation models are utilized. Catchment SOC stocks below 0.3 m depth based on our SOC-curvature model account for >50% of the total SOC indicating substantial underestimation of stocks if sampled at shallower depths. A rapid assessment method introduced here also allows for accurate catchment-wide total SOC inventory estimation with a minimum of one soil pit and topographic data if spatial distribution of total profile SOC is not required. Comparison of multiple datasets shows generality in linear SOC-curvature and -soil thickness relationships at multiple scales. We conclude that mechanisms driving variations in carbon storage in hillslope catchment soils vary spatially at relatively small scales and can be described in a deterministic fashion given adequate topographic data.

     
    more » « less
  4. SUMMARY

    Global variations in the propagation of fundamental-mode and overtone surface waves provide unique constraints on the low-frequency source properties and structure of the Earth’s upper mantle, transition zone and mid mantle. We construct a reference data set of multimode dispersion measurements by reconciling large and diverse catalogues of Love-wave (49.65 million) and Rayleigh-wave dispersion (177.66 million) from eight groups worldwide. The reference data set summarizes measurements of dispersion of fundamental-mode surface waves and up to six overtone branches from 44 871 earthquakes recorded on 12 222 globally distributed seismographic stations. Dispersion curves are specified at a set of reference periods between 25 and 250 s to determine propagation-phase anomalies with respect to a reference Earth model. Our procedures for reconciling data sets include: (1) controlling quality and salvaging missing metadata; (2) identifying discrepant measurements and reasons for discrepancies; (3) equalizing geographic coverage by constructing summary rays for travel-time observations and (4) constructing phase velocity maps at various wavelengths with combination of data types to evaluate inter-dataset consistency. We retrieved missing station and earthquake metadata in several legacy compilations and codified scalable formats to facilitate reproducibility, easy storage and fast input/output on high-performance-computing systems. Outliers can be attributed to cycle skipping, station polarity issues or overtone interference at specific epicentral distances. By assessing inter-dataset consistency across similar paths, we empirically quantified uncertainties in traveltime measurements. More than 95 per cent measurements of fundamental-mode dispersion are internally consistent, but agreement deteriorates for overtones especially branches 5 and 6. Systematic discrepancies between raw phase anomalies from various techniques can be attributed to discrepant theoretical approximations, reference Earth models and processing schemes. Phase-velocity variations yielded by the inversion of the summary data set are highly correlated (R ≥ 0.8) with those from the quality-controlled contributing data sets. Long-wavelength variations in fundamental-mode dispersion (50–100 s) are largely independent of the measurement technique with high correlations extending up to degree ∼25. Agreement degrades with increasing branch number and period; highly correlated structure is found only up to degree ∼10 at longer periods (T > 150 s) and up to degree ∼8 for overtones. Only 2ζ azimuthal variations in phase velocity of fundamental-mode Rayleigh waves were required by the reference data set; maps of 2ζ azimuthal variations are highly consistent between catalogues ( R = 0.6–0.8). Reference data with uncertainties are useful for improving existing measurement techniques, validating models of interior structure, calculating teleseismic data corrections in local or multiscale investigations and developing a 3-D reference Earth model.

     
    more » « less
  5. Abstract

    Understanding soil organic carbon (SOC) response to global change has been hindered by an inability to map SOC at horizon scales relevant to coupled hydrologic and biogeochemical processes. Standard SOC measurements rely on homogenized samples taken from distinct depth intervals. Such sampling prevents an examination of fine‐scale SOC distribution within a soil horizon. Visible near‐infrared hyperspectral imaging (HSI) has been applied to intact monoliths and split cores surfaces to overcome this limitation. However, the roughness of these surfaces can influence HSI spectra by scattering reflected light in different directions posing challenges to fine‐scale SOC mapping. Here, we examine the influence of prescribed surface orientation on reflected spectra, develop a method for correcting topographic effects, and calibrate a partial least squares regression (PLSR) model for SOC prediction. Two empirical models that account for surface slope, aspect, and wavelength and two theoretical models that account for the geometry of the spectrometer were compared using 681 homogenized soil samples from across the United States that were packed into sample wells and presented to the spectrometer at 91 orientations. The empirical approach outperformed the more complex geometric models in correcting spectra taken at non‐flat configurations. Topographically corrected spectra reduced bias and error in SOC predicted by PLSR, particularly at slope angles greater than 30°. Our approach clears the way for investigating the spatial distributions of multiple soil properties on rough intact soil samples.

     
    more » « less