skip to main content


This content will become publicly available on December 3, 2024

Title: Topographic correction of visible near‐infrared reflectance spectra for horizon‐scale soil organic carbon mapping
Abstract

Understanding soil organic carbon (SOC) response to global change has been hindered by an inability to map SOC at horizon scales relevant to coupled hydrologic and biogeochemical processes. Standard SOC measurements rely on homogenized samples taken from distinct depth intervals. Such sampling prevents an examination of fine‐scale SOC distribution within a soil horizon. Visible near‐infrared hyperspectral imaging (HSI) has been applied to intact monoliths and split cores surfaces to overcome this limitation. However, the roughness of these surfaces can influence HSI spectra by scattering reflected light in different directions posing challenges to fine‐scale SOC mapping. Here, we examine the influence of prescribed surface orientation on reflected spectra, develop a method for correcting topographic effects, and calibrate a partial least squares regression (PLSR) model for SOC prediction. Two empirical models that account for surface slope, aspect, and wavelength and two theoretical models that account for the geometry of the spectrometer were compared using 681 homogenized soil samples from across the United States that were packed into sample wells and presented to the spectrometer at 91 orientations. The empirical approach outperformed the more complex geometric models in correcting spectra taken at non‐flat configurations. Topographically corrected spectra reduced bias and error in SOC predicted by PLSR, particularly at slope angles greater than 30°. Our approach clears the way for investigating the spatial distributions of multiple soil properties on rough intact soil samples.

 
more » « less
Award ID(s):
2034232
NSF-PAR ID:
10484964
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Soil Science Society of America Journal
ISSN:
0361-5995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Topography and canopy cover influence ground temperature in warming permafrost landscapes, yet soil temperature heterogeneity introduced by mesotopographic slope positions, microtopographic differences in vegetation cover, and the subsequent impact of contrasting temperature conditions on soil organic carbon (SOC) dynamics are understudied. Buffering of permafrost‐affected soils against warming air temperatures in boreal forests can reflect surface soil characteristics (e.g., thickness of organic material) as well as the degree and type of canopy cover (e.g., open cover vs. closed cover). Both landscape and soil properties interact to determine meso‐ and microscale heterogeneity of ground warming. We sampled a hillslope catena transect in a discontinuous permafrost zone near Fairbanks, Alaska, to test the small‐scale (1 to 3 m) impacts of slope position and cover type on soil organic matter composition. Mineral active layer samples were collected from backslope, low backslope, and footslope positions at depths spanning 19 to 60 cm. We examined soil mineralogical composition, soil moisture, total carbon and nitrogen content, and organic mat thickness in conjunction with an assessment of SOC composition using Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). Soils in the footslope position had a higher relative contribution of lignin‐like compounds, whereas backslope soils had more aliphatic and condensed aromatic compounds as determined using FT‐ICR‐MS. The effect of open versus closed tree canopy cover varied with the slope position. On the backslope, we found higher oxidation of molecules under open cover than closed cover, indicating an effect of warmer soil temperature on decomposition. Little to no effect of the canopy was observed in soils at the footslope position, which we attributed, in part, to the strong impact of soil moisture content in SOC dynamics in the water‐gathering footslope position. The thin organic mat under open cover on the backslope position may have contributed to differences in soil temperature and thus SOC oxidation under open and closed canopies. Here, the thinner organic mat did not appear to buffer the underlying soil against warm season air temperatures and thus increased SOC decomposition as indicated by the higher oxidation of SOC molecules and a lower contribution of simple molecules under open cover than the closed canopy sites. Our findings suggest that the role of canopy cover in SOC dynamics varies as a function of landscape position and soil properties, namely, organic mat thickness and soil moisture. Condition‐specific heterogeneity of SOC composition under open and closed canopy cover highlights the protective effect of canopy cover for soils on backslope positions.

     
    more » « less
  2. Summary Highlights

    Explored new calibration subsetting methods and chemometric models in soil spectral modelling.

    Compared the methods and models for 17 soil properties in an understudied area of India.

    Random subsetting was not always optimal; subsetting matters and depends on data characteristics.

    Sparse models from genomics performed better in 75% of cases than a standard method.

     
    more » « less
  3. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  4. Introduction: With the capture of the first high- resolution, in-situ images of Near-Earth Objects (NEOs) a couple of decades ago [1–4], the ubiquity of regolith and the granular nature of small objects in the Solar System became apparent. Benefiting from an increased access to high computing power, new numerical studies emerged, modeling granular structures forming and evolving as small bodies in the Solar System [5–7]. Now adding laboratory studies on granular material strength for asteroid and other small body applications [8,9], we are steadily progressing in our understanding of how regolith is shaping the interiors and surfaces of these worlds. In addition, our ever-more powerful observation capabilities are uncovering interesting dust-related phenomena in the outer skirts of our Solar System, in the form of activity at large heliocentric distances and rings [10–12]. We find that our recent progress in understanding the behavior of granular material in small body environments also has applications to the more distant worlds of Centaurs and Trans-Neptunian Objects (TNOs). Internal Strength: We currently deduce internal friction of rubble piles from the observation of large numbers of small asteroids and their rotation rates, combined with the associated numerical simulations [13,14]. In the laboratory, we study internal friction of simulant materials using shear strength measurements [8]. Combining observations, modeling, and laboratory work, the picture emerges of rubble pile interiors being composed of coarse grains in the mm to cm range. The irregular shapes of the grains lead to mechanical interlocking, thus generating the internal friction required to match observations of the asteroid population [8,9]. We find that the presence of a fine fraction in the confined interior of a rubble pile actually leads weaker internal strength [9]. Surface Strength: Deducing surface regolith strength for NEOs is usually performed via average slope measurements [15–17] or, most notably, observing the outcome of an impact of known energy [18]. In the laboratory, we measure the angle of repose of simulant material via pouring tests, as well as its bulk cohesion using shear strength measurements [8]. In some cases, this allows us to infer grain size ranges for various regions of the surface and subsurface of pictured NEOs, beyond the resolution of their in-situ images. Surface Activity: The Rosetta mission revealed that a number of activity events on comet 67P/Churyumov–Gerasimenko were linked to active surface geology, most notably avalanches and cliff collapses [19]. In addition, the role of regolith strength in asteroid disruption patterns has been inferred from numerical simulations of rotating rubble piles [20]. By studying strength differences in simulant samples, it becomes apparent that a difference in cohesion between a surface and its subsurface layer can lead to activity events with surface mass shedding, without the presence of volatiles sublimating as a driver [8]. We show that such differences in surface strength can be brought upon by a depletion in fine grains or a change in composition (e.g. depletion in water ice) and could account for regular activity patterns on small bodies, independently of their distance to the Sun. This is of particular interest to the study of Centaur activity and a potential mechanism for feeding ring systems. 
    more » « less
  5. Mineral weathering is an important soil-forming process driven by the interplay of water, organisms, solution chemistry, and mineralogy. The influence of hillslope-scale patterns of water flux on mineral weathering in soils is still not well understood, particularly in humid postglacial soils, which commonly harbor abundant weath- erable primary minerals. Previous work in these settings showed the importance of lateral hydrologic patterns to hillslope-scale pedogenesis. In this study, we hypothesized that there is a corresponding relationship between hydrologically driven pedogenesis and chemical weathering in podzols in the White Mountains of New Hamp- shire, USA. We tested this hypothesis by quantifying the depletion of plagioclase in the fine fraction (≤2 mm) of closely spaced, similar-age podzols along a gradient in topography and depth to bedrock that controls lateral water flow. Along this gradient, laterally developed podzols formed through frequent, episodic flushing by up- slope groundwater, and vertically developed podzols formed through characteristic vertical infiltration. We estimated the depletion of plagioclase-bound elements within the upper mineral horizons of podzols using mass transfer coefficients (τ) and quantified plagioclase losses directly through electron microscopy and microprobe analysis. Elemental depletion was significantly more pronounced in the upslope lateral eluvial (E horizon- dominant) podzols relative to lateral illuvial (B horizon-dominant) and vertical (containing both E and B hori- zons) podzols downslope, with median Na losses of ~74 %, ~56 %, and ~40 %, respectively. When comparing genetic E horizons, Na and Al were significantly more depleted in laterally developed podzols relative to vertically developed podzols. Microprobe analysis revealed that ~74 % of the plagioclase was weathered from the mineral pool of lateral eluvial podzols, compared to ~39 % and ~23 % for lateral illuvial podzols and vertically developed podzols, respectively. Despite this intense weathering, plagioclase remains the second most abundant mineral in soil thin sections. These findings confirm that the concept of soil development as occurring vertically does not accurately characterize soils in topographically complex regions. Our work improves the current understanding of pedogenesis by identifying distinct, short-scale gradients in mineral weathering shaped by local patterns of hydrology and topography. 
    more » « less