skip to main content


Title: Prism: Deconstructing the Blockchain to Approach Physical Limits
The concept of a blockchain was invented by Satoshi Nakamoto to maintain a distributed ledger. In addition to its security, important performance measures of a blockchain protocol are its transaction throughput and confirmation latency. In a decentralized setting, these measures are limited by two underlying physical network attributes: communication capacity and speed-of-light propagation delay. In this work we introduce Prism, a new proof-of-work blockchain protocol, which can achieve 1) security against up to 50% adversarial hashing power; 2) optimal throughput up to the capacity C of the network; 3) confirmation latency for honest transactions proportional to the propagation delay D, with confirmation error probability exponentially small in the bandwidth-delay product CD; 4) eventual total ordering of all transactions. Our approach to the design of this protocol is based on deconstructing Nakamoto’s blockchain into its basic functionalities and systematically scaling up these functionalities to approach their physical limits.  more » « less
Award ID(s):
1651236 1718270
NSF-PAR ID:
10145955
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM SIGSAC Conference on Computer and Communications Security
Page Range / eLocation ID:
585 to 602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Payment channel networks are a promising solution to the scalability challenge of blockchains and are designed for significantly increased transaction throughput compared to the layer one blockchain. Since payment channel networks are essentially decentralized peerto- peer networks, routing transactions is a fundamental challenge. Payment channel networks have some unique security and privacy requirements that make pathfinding challenging, for instance, network topology is not publicly known, and sender/receiver privacy should be preserved, in addition to providing atomicity guarantees for payments. In this paper, we present an efficient privacypreserving routing protocol, SPRITE, for payment channel networks that supports concurrent transactions. By finding paths offline and processing transactions online, SPRITE can process transactions in just two rounds, which is more efficient compared to prior work. We evaluate SPRITE’s performance using Lightning Network data and prove its security using the Universal Composability framework. In contrast to the current cutting-edge methods that achieve rapid transactions, our approach significantly reduces the message complexity of the system by 3 orders of magnitude while maintaining similar latencies. 
    more » « less
  2. Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, we demonstrate that Blockumulus is scalable in all three dimensions: computation, data storage, and transaction throughput. Besides eliminating the current code execution and storage restrictions, Blockumulus delivers a transaction latency between 2 and 5 seconds under normal load. Moreover, the stress test of our prototype reveals the ability to execute 20,000 simultaneous transactions under 26 seconds, which is on par with the average throughput of worldwide credit card transactions. 
    more » « less
  3. null (Ed.)
    Blockchain technology has recently gained high popularity in data security, primarily to mitigate against data breach and manipulation. Since its inception in 2008, it has been applied in different areas mainly to maintain data integrity and consistency. Blockchain has been tailored to secure data due to its data immutability and distributive technology. Despite the high success rate in data security, the inability to identify compromised insider nodes is one of the significant problems encountered in blockchain architectures. A Blockchain network is made up of nodes that initiate, verify and validate transactions. If compromised, these nodes can manipulate submitted transactions, inject fake transactions, or retrieve unauthorized information that might eventually compromise the stored data's integrity and consistency. This paper proposes a novel method of detecting these compromised blockchain nodes using a server-side authentication process and thwart their activities before getting updated in the blockchain ledger. In evaluating the proposed system, we perform four common insider attacks, which fall under the following three categories: (1)Those attacks targeting the Blockchain to bring it down. (2) the attacks that attempt to inject fake data into the database. (3) The attacks that attempt to hijack or retrieve unauthorized data. We described how we implement the attacks and how our architecture detects them before they impact the network. Finally, we displayed the attack detection time for each attack and compared our approach with other existing methods. 
    more » « less
  4. P4 (Programming Protocol-Independent Packet Processors) represents a paradigm shift in network programmability by providing a high-level language to define packet processing behavior in network switches/devices. The importance of P4 lies in its ability to overcome the limitations of OpenFlow, the previous de facto standard for software-defined networking (SDN). Unlike OpenFlow, which operates on fixed match-action tables, P4 offers an approach where network operators can define packet processing behaviors at various protocol layers. P4 provides a programmable platform to create and implement custom network switches/devices protocols. However, this opens a new attack surface for threat actors who can access P4-enabled switches/devices and manipulate custom protocols for malicious purposes. Attackers can craft malicious packets to exploit protocol-specific vulnerabilities in these network devices. This ongoing research work proposes a blockchain-based model to secure P4 custom protocols. The model leverages the blockchain’s immutability, tamperproof ability, distributed consensus for protocol governance, and auditing to guarantee the transparency, security, and integrity of custom protocols defined in P4 programmable switches. The protocols are recorded as transactions and stored on the blockchain network. The model's performance will be evaluated using execution time in overhead computation, false positive rate, and network scalability. 
    more » « less
  5. As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis. 
    more » « less