Abstract— A core capability of robots is to reason about mul- tiple objects under uncertainty. Partially Observable Markov Decision Processes (POMDPs) provide a means of reasoning under uncertainty for sequential decision making, but are computationally intractable in large domains. In this paper, we propose Object-Oriented POMDPs (OO-POMDPs), which represent the state and observation spaces in terms of classes and objects. The structure afforded by OO-POMDPs support a factorization of the agent’s belief into independent object distributions, which enables the size of the belief to scale linearly versus exponentially in the number of objects. We formulate a novel Multi-Object Search (MOS) task as an OO-POMDP for mobile robotics domains in which the agent must find the locations of multiple objects. Our solution exploits the structure of OO-POMDPs by featuring human language to selectively update the belief at task onset. Using this structure, we develop a new algorithm for efficiently solving OO-POMDPs: Object- Oriented Partially Observable Monte-Carlo Planning (OO- POMCP). We show that OO-POMCP with grounded language commands is sufficient for solving challenging MOS tasks both in simulation and on a physical mobile robot.
Sampling Networks and Aggregate Simulation for Online POMDP Planning
The paper introduces a new algorithm for planning in partially observable Markov decision processes (POMDP) based on the idea of aggregate simulation. The algorithm uses product distributions to approximate the belief state and shows how to build a representation graph of an approximate action-value function over belief space. The graph captures the result of simulating the model in aggregate under independence assumptions, giving a symbolic representation of the value function. The algorithm supports large observation spaces using sampling networks, a representation of the process of sampling values of observations, which is integrated into the graph representation. Following previous work in MDPs this approach enables action selection in POMDPs through gradient optimization over the graph representation. This approach complements recent algorithms for POMDPs which are based on particle representations of belief states and an explicit search for action selection. Our approach enables scaling to large factored action spaces in addition to large state spaces and observation spaces. An experimental evaluation demonstrates that the algorithm provides excellent performance relative to state of the art in large POMDP problems.
- Publication Date:
- NSF-PAR ID:
- 10146123
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider off-policy evaluation (OPE) in Partially Observable Markov Decision Processes (POMDPs), where the evaluation policy depends only on observable variables and the behavior policy depends on unobservable latent variables. Existing works either assume no unmeasured confounders, or focus on settings where both the observation and the state spaces are tabular. In this work, we first propose novel identification methods for OPE in POMDPs with latent confounders, by introducing bridge functions that link the target policy’s value and the observed data distribution. We next propose minimax estimation methods for learning these bridge functions, and construct three estimators based on these estimated bridge functions, corresponding to a value function-based estimator, a marginalized importance sampling estimator, and a doubly-robust estimator. Our proposal permits general function approximation and is thus applicable to settings with continuous or large observation/state spaces. The nonasymptotic and asymptotic properties of the proposed estimators are investigated in detail. A Python implementation of our proposal is available at https://github.com/jiaweihhuang/ Confounded-POMDP-Exp.
-
Abstract To be responsive to dynamically changing real-world environments, an intelligent agent needs to perform complex sequential decision-making tasks that are often guided by commonsense knowledge. The previous work on this line of research led to the framework called interleaved commonsense reasoning and probabilistic planning (i corpp ), which used P-log for representing commmonsense knowledge and Markov Decision Processes (MDPs) or Partially Observable MDPs (POMDPs) for planning under uncertainty. A main limitation of i corpp is that its implementation requires non-trivial engineering efforts to bridge the commonsense reasoning and probabilistic planning formalisms. In this paper, we present a unified framework to integrate i corpp ’s reasoning and planning components. In particular, we extend probabilistic action language pBC + to express utility, belief states, and observation as in POMDP models. Inheriting the advantages of action languages, the new action language provides an elaboration tolerant representation of POMDP that reflects commonsense knowledge. The idea led to the design of the system pbcplus2pomdp , which compiles a pBC + action description into a POMDP model that can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of the pBC + action description. Our experiments show that it retains the advantagesmore »
-
Cancer screening is a large, population-based intervention that would benefit from tools enabling individually-tailored decision making to decrease unintended consequences such as overdiagnosis. The heterogeneity of cancer screening participants advocates the need for more personalized approaches. Partially observable Markov decision processes (POMDPs) can be used to suggest optimal, individualized screening policies. However, determining an appropriate reward function can be challenging. Here, we propose the use of inverse reinforcement learning (IRL) to form rewards functions for lung and breast cancer screening POMDP models. Using data from the National Lung Screening Trial and our institution's breast screening registry, we developed two POMDP models with corresponding reward functions. Specifically, the maximum entropy (MaxEnt) IRL algorithm with an adaptive step size was used to learn rewards more efficiently; and combined with a multiplicative model to learn state-action pair rewards in the POMDP. The lung and breast cancer screening models were evaluated based on their ability to recommend appropriate screening decisions before the diagnosis of cancer. Results are comparable with experts' decisions. The lung POMDP demonstrated an improved performance in terms of recall and false positive rate in the second screening and post-screening stages. Precision (0.02-0.05) was comparable to experts' (0.02-0.06). The breast POMDP hasmore »
-
This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derive a more compact computation graph for aggregate simulation. The second improvement replaces the random policy embedded in the computation graph with symbolic variables that are optimized simultaneously with the search for high quality actions. This expands the scope of the approach to problems that require deep search and where information is lost quickly with random steps. An empirical evaluation shows that these ideas significantly improve performance, leading to state of the art performance on hard planning problems.