skip to main content


Title: Synthesis of Amides by Transamidation and Amidation of Activated Amides and Esters
This chapter provides a summary of the recent advances in direct transamidation and amidation reactions of activated amides and esters via transition- metal-catalyzed and transition-metal-free C(acyl)–N and C(acyl)–O bond cleavage as a new disconnection for the synthesis of amide bonds.  more » « less
Award ID(s):
1650766
PAR ID:
10146173
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science of synthesis
ISSN:
2510-5469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal- catalyzed, transition-metal-free or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN→π*C=O delocalization in amides and nO→π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC- catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods. 
    more » « less
  2. Abstract

    The amide bond N−C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N−C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C−C, C−N, C−O and C−S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.

     
    more » « less
  3. The direct nucleophilic addition to amides represents an attractive methodology in organic synthesis that tackles amidic resonance by ground-state destabilization. This approach has been recently accomplished with carbon, nitrogen and oxygen nucleophiles. Herein, we report an exceedingly mild method for the direct thioesterification and selenoesterification of amides by selective N–C(O) bond cleavage in the absence of transition metals. Acyclic amides undergo N–C(O) to S/Se–C(O) interconversion to give the corresponding thioesters and selenoesters in excellent yields at room temperature via a tetrahedral intermediate pathway (cf. an acyl metal). 
    more » « less
  4. Amides are of fundamental interest in many fields of chemistry involving organic synthesis, chemical biology and biochemistry. Here, we report the first catalytic Buchwald-Hartwig coupling of both common esters and amides by highly selective C(acyl)–X (X = O, N) cleavage to rapidly access aryl amide functionality via crosscoupling strategy. Reactions are promoted by versatile, easily prepared, well-defined Pd-PEPPSI type precatalysts, proceed in good to excellent yields and with excellent chemoselectivity for the acyl bond cleavage. The method is user friendly because it employs commercially-available, moisture- and air-stable precatalysts. Notably, for the first time we demonstrate selective C(acyl)–N and C(acyl)–O cleavage/Buchwald-Hartwig amination under the same reaction conditions, which allows for streamlining amide synthesis by avoiding restriction to a particular acyl metal precursor. Of broad interest, this study opens the door to using a family of well-defined Pd(II)-NHC precatalysts bearing pyridine ͞throw-away ligands for the selective C-acyl–amination of bench-stable carboxylic acid derivatives. 
    more » « less
  5. Cross-coupling reactions are among the most powerful C–C and C–X bond forming tools in organic chemistry. Traditionally, cross-coupling methods rely on the use of aryl halides or pseudohalides as electrophiles. In the past three years, decarbonylative cross-couplings of amides have emerged as an attractive method for the construction of a wide variety of carbon–carbon and carbon–heteroatom bonds, allowing for the synthetically-valuable functional group inter-conversion of the amide bond. These previously elusive reactions hinge upon selective activation of the N–C(O) acyl amide bond, followed by CO extrusion, in a formal double N–C/C–C bond activation, to generate a versatile aryl–metal intermediate as an attractive alternative to traditional cross-couplings of aryl halides and pseudohalides. In this perspective review, we present recent advances and key developments in the field of decarbonylative cross-coupling reactions of amides as well as discuss future challenges and potential applications for this exciting field. 
    more » « less