- Award ID(s):
- 1836537
- PAR ID:
- 10146305
- Date Published:
- Journal Name:
- Inorganic Chemistry
- ISSN:
- 0020-1669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Achieving control of phase memory relaxation times ( T m ) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V( iv ) complexes with brominated catecholate ligands, [V(C 6 H 4−n Br n O 2 ) 3 ] 2− ( n = 0, 1, 2, and 4), where the 79/81 Br and 1 H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V( iv ) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift ( δ ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion.more » « less
-
Abstract Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal‐ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox‐state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe‐DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox‐chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5‐coordinate species with an open coordination site offering the possibility of enhanced reactivity.
-
A series of bis-cyclometalated iridium complexes were prepared which combine triazole or NHC-based cyclometalating ligands with substituted β-diketiminate (NacNac) ancillary ligands. The HOMO is localized on the NacNac ligand and its energy and associated redox potential are determined by the NacNac substitution pattern. The effect of the cyclometalating ligand, relative to the more common 2-phenylpyridine derivatives, is to destabilize the LUMO and increase the triplet excited-state energy ( E T1 ). These results are supported by DFT calculations, which show HOMOs and LUMOs that are respectively localized on the NacNac and cyclometalating ligands. With this new design, we observe more negative excited-state reduction potentials, E (Ir IV /*Ir III ), with two members of the series standing out as the most potent visible-light iridium photoreductants ever reported. Stern–Volmer quenching experiments with ketone acceptors (benzophenone and acetophenone) show that the increased thermodynamic driving force for photoinduced electron-transfer correlates with faster rates relative to fac -Ir(ppy) 3 and previous generations of NacNac-supported iridium complexes. A small selection of photoredox transformations is shown, demonstrating that these new photoreductants are capable of activating challenging organohalide substrates, albeit with modest conversion.more » « less
-
Recently, Santos et al. published an article titled “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance” in ACS Nano. In this article it was claimed that crystalline amino acid enantiomers can give rise to 1H-15N and 1H-13C cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra with different relative signal intensities. The authors attributed such differences to transient changes in T1 relaxation times resulting from an interaction between the electron spins and the radiofrequency contact pulses used in the CPMAS experiment, and discussed this proposed phenomenon in terms of the chirality-induced spin selectivity (CISS) effect. We disagree with the authors conclusion that the CISS effect plays a role in the different signal intensities observed in the CPMAS solid-state NMR spectra of crystalline enantiomers. Quantitative 13C CPMAS experiments on aspartic acid enantiomers demonstrate that CPMAS signal variations can likely be attributed to sample dependent differences in T1 relaxation times rather than any chirality effects.more » « less
-
null (Ed.)Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2-substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19F MRI suggests hypoxia-targeting theranostic applications by redox activation.more » « less