skip to main content


Title: Programmable Nuclear-Spin Dynamics in Ti(IV) Coordination Complexes
Interstitial patterning of nuclear spins is a nascent design principle for controlling electron spin superposition lifetimes in open-shell complexes and solid-state defects. Herein we report the first test of the impact of the patterning principle on ligand-based nuclear spin dynamics. We test how substitutional patterning of 1H and 79/81Br nuclear spins on ligands modulates proton nuclear spin dynamics in the ligand shell of metal complexes. To do so, we studied the 1H nuclear magnetic resonance relaxation times (T1 and T2) of a series of eight polybrominated catechol ligands and six complexes formed by coordination of the ligands to a Ti(IV) ion. These studies reveal that 1H T1 values can be enhanced in the individual ligands by a factor of 4 (from 10.8(3) to 43(5) s) as a function of substitution pattern, reaching the maximum value for 3,4,6-tribromocatechol. The T2 for 1H is also enhanced by a factor of 4, varying by ∼14 s across the series. When complexed, the impact of the patterning design strategy on nuclear spin dynamics is amplified and 1H T1 and T2 values vary by over an order of magnitude. Importantly, the general trends observed in the ligands also match those when complexed. Hence, these results demonstrate a new design principle to control 1H spin dynamics in metal complexes through pattern-based design strategies in the ligand shell.  more » « less
Award ID(s):
1836537
NSF-PAR ID:
10146305
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inorganic Chemistry
ISSN:
0020-1669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving control of phase memory relaxation times ( T m ) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V( iv ) complexes with brominated catecholate ligands, [V(C 6 H 4−n Br n O 2 ) 3 ] 2− ( n = 0, 1, 2, and 4), where the 79/81 Br and 1 H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V( iv ) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift ( δ ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion. 
    more » « less
  2. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less
  3. Abstract

    Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal‐ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox‐state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe‐DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox‐chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5‐coordinate species with an open coordination site offering the possibility of enhanced reactivity.

     
    more » « less
  4. null (Ed.)
    Spin crossover (SCO) is a phenomenon observed for certain transition metal complexes with electronic configuration 3d4-3d7. The conversion between the low-spin (LS) and high-spin (HS) states is usually driven by a variety of external perturbations, such as temperature, pressure, or light. The switching between the enthalpically preferred LS state and entropically favorable HS state is accompanied by dramatic changes in the metal-ligand bond lengths, unit cell volume, optical absorption spectrum, and magnetic susceptibility.1 These changes make SCO materials suitable for applications in sensors, memory, and display devices. One of the central challenges in the SCO research is to initiate strongly cooperative interactions known to lead to abrupt spin transitions and thermal hysteresis that can be harvested as a memory effect. One of the strategies to enhance the cooperativity is to design SCO complexes with supramolecular interactions such as π-stacking of aromatic fragments or hydrogen bonding.2 In this work, we report syntheses and characterization of heteroleptic complexes of [Fe(tpma)(L)](ClO4)2 (tpma = tris(pyridin-2-ylmethyl)amine) with novel π-extended biimidazole-type ligands (L) bearing 2,3-dimethyl-naphthalene-, 6,7-dimethyl-2,3-diphenyl-quinoxaline, and 2,3-dimethyl-anthracene pendant fragments. Solvent-free naphthalene-functionalized complex [Fe(tpma)(xnap-bim)](ClO4)2 exhibits abrupt spin transition at T1/2 = 127K with a narrow 1 K hysteresis loop. In contrast, polymorph of this complex that contains one interstitial molecules of pyridine exhibits gradual SCO. Anthracene-functionalized complex [Fe(tpma)(anthra-bim)](ClO4)2 also crystallizes as two polymorphs. Structural studies at 100, 230, and 300 K revealed dramatic changes in the N-Fe-N biting angles and Fe-N distances, indicating the occurrence of temperature-induced SCO. Complex [Fe(tpma)(quin-bim)](ClO4)2 (quin-bim = 6,7-dimethyl-2,3-diphenyl-quinoxaline-2,2’-biimidazole) showed only HS state at 100 and 230 K. In the crystal packing the mononuclear cations form stacks along b axis. We discuss how the observed magnetic behavior correlates with changes in the crystal packing and interactions between the pendant aromatic substituents on the aforementioned complexes. 
    more » « less
  5. A series of bis-cyclometalated iridium complexes were prepared which combine triazole or NHC-based cyclometalating ligands with substituted β-diketiminate (NacNac) ancillary ligands. The HOMO is localized on the NacNac ligand and its energy and associated redox potential are determined by the NacNac substitution pattern. The effect of the cyclometalating ligand, relative to the more common 2-phenylpyridine derivatives, is to destabilize the LUMO and increase the triplet excited-state energy ( E T1 ). These results are supported by DFT calculations, which show HOMOs and LUMOs that are respectively localized on the NacNac and cyclometalating ligands. With this new design, we observe more negative excited-state reduction potentials, E (Ir IV /*Ir III ), with two members of the series standing out as the most potent visible-light iridium photoreductants ever reported. Stern–Volmer quenching experiments with ketone acceptors (benzophenone and acetophenone) show that the increased thermodynamic driving force for photoinduced electron-transfer correlates with faster rates relative to fac -Ir(ppy) 3 and previous generations of NacNac-supported iridium complexes. A small selection of photoredox transformations is shown, demonstrating that these new photoreductants are capable of activating challenging organohalide substrates, albeit with modest conversion. 
    more » « less