skip to main content


Title: Nuclear-spin-pattern control of electron-spin dynamics in a series of V( iv ) complexes
Achieving control of phase memory relaxation times ( T m ) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V( iv ) complexes with brominated catecholate ligands, [V(C 6 H 4−n Br n O 2 ) 3 ] 2− ( n = 0, 1, 2, and 4), where the 79/81 Br and 1 H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V( iv ) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift ( δ ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion.  more » « less
Award ID(s):
1836537
NSF-PAR ID:
10114093
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
36
ISSN:
2041-6520
Page Range / eLocation ID:
8447 to 8454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using transition metal ions for spin-based applications, such as electron paramagnetic resonance imaging (EPRI) or quantum computation, requires a clear understanding of how local chemistry influences spin properties. Herein we report a series of four ionic complexes to provide the first systematic study of one aspect of local chemistry on the V( iv ) spin – the counterion. To do so, the four complexes (Et 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 1 ), ( n -Bu 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 2 ), ( n -Hex 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 3 ), and ( n -Oct 3 NH) 2 [V(C 6 H 4 O 2 ) 3 ] ( 4 ) were probed by EPR spectroscopy in solid state and solution. Room temperature, solution X-band ( ca. 9.8 GHz) continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy revealed an increasing linewidth with larger cations, likely a counterion-controlled tumbling in solution via ion pairing. In the solid state, variable-temperature (5–180 K) X-band ( ca. 9.4 GHz) pulsed EPR studies of 1–4 in o -terphenyl glass demonstrated no effect on spin–lattice relaxation times ( T 1 ), indicating little role for the counterion on this parameter. However, the phase memory time ( T m ) of 1 below 100 K is markedly smaller than those of 2–4 . This result is counterintuitive, as 2–4 are relatively richer in 1 H nuclear spin, hence, expected to have shorter T m . Thus, these data suggest an important role for counterion methyl groups on T m , and moreover provide the first instance of a lengthening T m with increasing nuclear spin quantity on a molecule. 
    more » « less
  2. Interstitial patterning of nuclear spins is a nascent design principle for controlling electron spin superposition lifetimes in open-shell complexes and solid-state defects. Herein we report the first test of the impact of the patterning principle on ligand-based nuclear spin dynamics. We test how substitutional patterning of 1H and 79/81Br nuclear spins on ligands modulates proton nuclear spin dynamics in the ligand shell of metal complexes. To do so, we studied the 1H nuclear magnetic resonance relaxation times (T1 and T2) of a series of eight polybrominated catechol ligands and six complexes formed by coordination of the ligands to a Ti(IV) ion. These studies reveal that 1H T1 values can be enhanced in the individual ligands by a factor of 4 (from 10.8(3) to 43(5) s) as a function of substitution pattern, reaching the maximum value for 3,4,6-tribromocatechol. The T2 for 1H is also enhanced by a factor of 4, varying by ∼14 s across the series. When complexed, the impact of the patterning design strategy on nuclear spin dynamics is amplified and 1H T1 and T2 values vary by over an order of magnitude. Importantly, the general trends observed in the ligands also match those when complexed. Hence, these results demonstrate a new design principle to control 1H spin dynamics in metal complexes through pattern-based design strategies in the ligand shell. 
    more » « less
  3. Abstract

    With the goal of generating anionic analogues to MN2S2Mn(CO)3Br we introduced metallodithiolate ligands, MN2S22−prepared from the Cys‐X‐Cys biomimetic, ema4−ligand (ema=N,N′‐ethylenebis(mercaptoacetamide); M=NiII, [VIV≡O]2+and FeIII) to Mn(CO)5Br. An unexpected, remarkably stable dimanganese product, (H2N2(CH2C=O(μ‐S))2)[Mn(CO)3]2resulted from loss of M originally residing in the N2S24−pocket, replaced by protonation at the amido nitrogens, generating H2ema2−. Accordingly, the ema ligand has switched its coordination mode from an N2S24−cavity holding a single metal, to a binucleating H2ema2−with bridging sulfurs and carboxamide oxygens within Mn‐μ‐S‐CH2‐C‐O, 5‐membered rings. In situ metal‐templating by zinc ions gives quantitative yields of the Mn2product. By computational studies we compared the conformations of “linear” ema4−to ema4−frozen in the “tight‐loop” around single metals, and to the “looser” fold possible for H2ema2−that is the optimal arrangement for binucleation. XRD molecular structures show extensive H‐bonding at the amido‐nitrogen protons in the solid state.

     
    more » « less
  4. Abstract

    With the goal of generating anionic analogues to MN2S2Mn(CO)3Br we introduced metallodithiolate ligands, MN2S22−prepared from the Cys‐X‐Cys biomimetic, ema4−ligand (ema=N,N′‐ethylenebis(mercaptoacetamide); M=NiII, [VIV≡O]2+and FeIII) to Mn(CO)5Br. An unexpected, remarkably stable dimanganese product, (H2N2(CH2C=O(μ‐S))2)[Mn(CO)3]2resulted from loss of M originally residing in the N2S24−pocket, replaced by protonation at the amido nitrogens, generating H2ema2−. Accordingly, the ema ligand has switched its coordination mode from an N2S24−cavity holding a single metal, to a binucleating H2ema2−with bridging sulfurs and carboxamide oxygens within Mn‐μ‐S‐CH2‐C‐O, 5‐membered rings. In situ metal‐templating by zinc ions gives quantitative yields of the Mn2product. By computational studies we compared the conformations of “linear” ema4−to ema4−frozen in the “tight‐loop” around single metals, and to the “looser” fold possible for H2ema2−that is the optimal arrangement for binucleation. XRD molecular structures show extensive H‐bonding at the amido‐nitrogen protons in the solid state.

     
    more » « less
  5. Abstract

    Size‐based selectivity for metal ions based on highly preorganized five‐membered chelate rings is discussed. Metal ion complexation by the tetra‐pyridyl ligand EBIP ((8,9‐dihydro‐diquino[8,7‐b:7′,8′‐j][1,10]phenanthroline) is investigated, Formation constants (log K1) are reported for EBIP with 28 metal ions in 50 % CH3OH/H2O (v/v). The shift in size‐selectivity toward large metal ions and against small metal is demonstrated. Log K1for the EBIP complexes shows a steady increase from La(III) to Lu(III), with a strong local maximum at Sm(III), and strong local minimum at Gd(III). This difference in log K1between Sm(III) and Gd(III) for the tetra‐pyridyls is shown to depend largely on the level of preorganization of the ligand, being at a maximum for EBIP and a minimum for quaterpyridine. Log K1for the Y(III) complex is invariably lower than for the similarly‐sized Ho(III) for all ligands that contain any nitrogen donors. Lower log K values for Y(III) are due to stabilization of the Ln(III) complexes with nitrogen donors by participation of the 5d orbitals, and to a lesser extent the 4 f orbitals, of the Ln(III) ions in M−L bonding. A DFT analysis of selectivity of tetra‐pyridyls for metal ions shows that Y(III) complexes should be less stable than similarly‐sized Ho(III) complexes.

     
    more » « less