skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benziodoxole-Derived Organosulfonates: The Strongest Hypervalent Iodine Electrophiles and Oxidants
This account describes the development of organosulfonyloxy-substituted iodine(III) and iodine(V) benziodoxole derived reagents, which are thermally stable compounds with useful reactivity patterns. Iodine(III) benziodoxoles and pseudobenziodoxoles are powerful electrophiles and mild oxidants toward various unsaturated compounds. In particular, pseudocyclic benziodoxole-derived triflate (IBA-OTf) is an efficient reagent for oxidative heteroannulation reactions. Aldoximes react with nitriles in the presence of IBA-OTf at room temperature to give 1,2,4-oxadiazoles in high yields. Moreover, IBA-triflate is used as a catalyst in oxidative heteroannulations with m-chloroperoxybenzoic acid as the terminal oxidant. The iodine(V) benziodoxole derived tosylates, DMP-tosylate and IBX-tosylate, are superior oxidants for the oxidation of structurally diverse, synthetically useful alcohols, utilized as key precursors in the total syntheses of polyketide antibiotics and terpenes. And finally, the most powerful hypervalent iodine(V) oxidant, 2-iodoxybenzoic acid ditriflate (IBX·2HOTf), is prepared by treatment of IBX with trifluoromethanesulfonic acid. According to the X-ray data, the I–OTf bonds in IBX-ditriflate have ionic character, leading to the high reactivity of this reagent in various oxidations. In particular, IBX-ditriflate can oxidize polyfluorinated primary alcohols, which are generally extremely resistant to oxidation. 1 Introduction 2 Iodine(III) Benziodoxole Based Organosulfonates 3 Pseudocyclic Iodine(III) Benziodoxole Triflate (IBA-triflate) 4 Pseudocyclic Iodine(III) Benziodoxole Tosylates 5 Iodine(V) Benziodoxole Derived Tosylates 6 Iodine(V) Benziodoxole Derived Triflate (IBX-ditriflate) 7 Conclusions  more » « less
Award ID(s):
1759798
PAR ID:
10146390
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Synlett
Volume:
31
Issue:
04
ISSN:
0936-5214
Page Range / eLocation ID:
315 to 326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Muniz, K.; Ishihara, K. (Ed.)
    Hypervalent iodine compounds are a widely used class of metal-free oxidants that find application in organic synthesis. Due to the homology between the reactivity of hypervalent iodine and many transition metals ¾ oxidative addition, ligand exchange, and reductive elimination can be facile for both ¾ hypervalent iodine species find application in a variety of synthetically important organic transformations. Major limitations of these reagents include the frequent need for (super)stoichiometric loading and the intrinsically poor atom economy that results from the generation of stoichiometric quantities of iodoarene byproducts. In addition, hypervalent iodine reagents are often synthesized using metal-based terminal oxidants, which compound the resulting waste stream. Recently, substantial progress has been made to address these limitations. Here, we discuss progress towards sustainable synthetic methods for the preparation of hypervalent iodine compounds and application of those methods in the context of hypervalent iodine catalysis. The discussion is organized according to the active oxygen content, and thus atom economy, of the terminal oxidant employed. Hypervalent iodine electrochemistry and the development of recyclable iodoarenes are also discussed. 
    more » « less
  2. Abstract Hypervalent iodine (HVI) reagents have gained much attention as versatile oxidants because of their low toxicity, mild reactivity, easy handling, and availability. Despite their unique reactivity and other advantageous properties, stoichiometric HVI reagents are associated with the disadvantage of generating non-recyclable iodoarenes as waste/co-products. To overcome these drawbacks, the syntheses and utilization of various recyclable hypervalent iodine reagents have been established in recent years. This review summarizes the development of various recyclable non-polymeric, polymer-supported, ionic-liquid-supported, and metal–organic framework (MOF)-hybridized HVI reagents. 1 Introduction 2 Polymer-Supported Hypervalent Iodine Reagents 2.1 Polymer-Supported Hypervalent Iodine(III) Reagents 2.2 Polymer-Supported Hypervalent Iodine(V) Reagents 3 Non-Polymeric Recyclable Hypervalent Iodine Reagents 3.1 Non-Polymeric Recyclable Hypervalent Iodine(III) Reagents 3.2 Recyclable Non-Polymeric Hypervalent Iodine(V) Reagents 3.3 Fluorous Hypervalent Iodine Reagents 4 Ionic-Liquid/Ion-Supported Hypervalent Iodine Reagents 5 Metal–Organic Framework (MOF)-Hybridized Hypervalent Iodine Reagents 6 Conclusion 
    more » « less
  3. Abstract Chemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail. 1 Introduction 2 Density Functional Theory Studies on Oxidative Addition at Nickel(0) 3 Stoichiometric Oxidative Addition Studies 4 Development of a Tosylate-Selective Suzuki Coupling 5 Conclusion and Outlook 
    more » « less
  4. Abstract Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C−H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron‐oxygen intermediates like iron(III)‐hydroperoxo and high‐valent iron‐oxo species have been trapped and identified in investigations of these bio‐inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio‐inspired nonheme iron systems to form the high‐valent iron‐oxo intermediates. 
    more » « less
  5. Abstract Due to the high oxidation potential between AuIand AuIII, gold redox catalysis requires at least stoichiometric amounts of a strong oxidant. We herein report the first example of an electrochemical approach in promoting gold‐catalyzed oxidative coupling of terminal alkynes. Oxidation of AuIto AuIIIwas successfully achieved through anode oxidation, which enabled facile access to either symmetrical or unsymmetrical conjugated diynes through homo‐coupling or cross‐coupling. This report extends the reaction scope of this transformation to substrates that are not compatible with strong chemical oxidants and potentiates the versatility of gold redox chemistry through the utilization of electrochemical oxidative conditions. 
    more » « less