skip to main content


Title: Feel the Globe: Enhancing the Perception of Immersive Spherical Visualizations with Tangible Proxies
Recent developments in the commercialization of virtual reality open up many opportunities for enhancing human interaction with three-dimensional objects and visualizations. Spherical visualizations allow for convenient exploration of certain types of data. Our tangible sphere, exactly aligned with the sphere visualizations shown in VR, implements a very natural way of interaction and utilizes senses and skills trained in the real world. In a lab study, we investigate the effects of the perception of actually holding a virtual spherical visualization in hands. As use cases, we focus on surface visualizations that benefit from or require a rounded shape. We compared the usage of two differently sized acrylic glass spheres to a related interaction technique that utilizes VR controllers as proxies. On the one hand, our work is motivated by the ability to create in VR a tangible, lightweight, handheld spherical display that can hardly be realized in reality. On the other hand, gaining insights about the impact of a fully tangible embodiment of a virtual object on task performance, comprehension of patterns, and user behavior is important in its own right. After a description of the implementation we discuss the advantages and disadvantages of our approach, taking into account different handheld spherical displays utilizing outside and inside projection.  more » « less
Award ID(s):
1748392
PAR ID:
10146470
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of IEEE Virtual Reality 2019, NIDIT: Workshop on Novel Input Devices and Interaction Techniques
Page Range / eLocation ID:
1693 to 1698
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emerging possibilities of data analysis and exploration in virtual reality raise the question of how users can be best supported during such interactions. Spherical visualizations allow for convenient exploration of certain types of data. Our tangible sphere, exactly aligned with the sphere visualizations shown in VR, implements a very natural way of interaction and utilizes senses and skills trained in the real world. This work is motivated by the prospect to create in VR a low-cost, tangible, robust, handheld spherical display that would be difficult or impossible to implement as a physical display. Our concept enables it to gain insights about the impact of a fully tangible embodiment of a virtual object on task performance, comprehension of patterns, and user behavior. After a description of the implementation we discuss the advantages and disadvantages of our approach, taking into account different handheld spherical displays utilizing outside and inside projection. 
    more » « less
  2. In this paper, we explore how a familiarly shaped object can serve as a physical proxy to manipulate virtual objects in Augmented Reality (AR) environments. Using the example of a tangible, handheld sphere, we demonstrate how irregularly shaped virtual objects can be selected, transformed, and released. After a brief description of the implementation of the tangible proxy, we present a buttonless interaction technique suited to the characteristics of the sphere. In a user study (N = 30), we compare our approach with three different controller-based methods that increasingly rely on physical buttons. As a use case, we focused on an alignment task that had to be completed in mid-air as well as on a flat surface. Results show that our concept has advantages over two of the controller-based methods regarding task completion time and user ratings. Our findings inform research on integrating tangible interaction into AR experiences. 
    more » « less
  3. In this work, we investigate the influence of different visualizations on a manipulation task in virtual reality (VR). Without the haptic feedback of the real world, grasping in VR might result in intersections with virtual objects. As people are highly sensitive when it comes to perceiving collisions, it might look more appealing to avoid intersections and visualize non-colliding hand motions. However, correcting the position of the hand or fingers results in a visual-proprioceptive discrepancy and must be used with caution. Furthermore, the lack of haptic feedback in the virtual world might result in slower actions as a user might not know exactly when a grasp has occurred. This reduced performance could be remediated with adequate visual feedback. In this study, we analyze the performance, level of ownership, and user preference of eight different visual feedback techniques for virtual grasping. Three techniques show the tracked hand (with or without grasping feedback), even if it intersects with the grasped object. Another three techniques display a hand without intersections with the object, called outer hand, simulating the look of a real world interaction. One visualization is a compromise between the two groups, showing both a primary outer hand and a secondary tracked hand. Finally, in the last visualization the hand disappears during the grasping activity. In an experiment, users perform a pick-and-place task for each feedback technique. We use high fidelity marker-based hand tracking to control the virtual hands in real time. We found that the tracked hand visualizations result in better performance, however, the outer hand visualizations were preferred. We also find indications that ownership is higher with the outer hand visualizations. 
    more » « less
  4. null (Ed.)
    Technological advancements and increased access have prompted the adoption of head- mounted display based virtual reality (VR) for neuroscientific research, manual skill training, and neurological rehabilitation. Applications that focus on manual interaction within the virtual environment (VE), especially haptic-free VR, critically depend on virtual hand-object collision detection. Knowledge about how multisensory integration related to hand-object collisions affects perception-action dynamics and reach-to-grasp coordination is needed to enhance the immersiveness of interactive VR. Here, we explored whether and to what extent sensory substitution for haptic feedback of hand-object collision (visual, audio, or audiovisual) and collider size (size of spherical pointers representing the fingertips) influences reach-to-grasp kinematics. In Study 1, visual, auditory, or combined feedback were compared as sensory substitutes to indicate the successful grasp of a virtual object during reach-to-grasp actions. In Study 2, participants reached to grasp virtual objects using spherical colliders of different diameters to test if virtual collider size impacts reach-to-grasp. Our data indicate that collider size but not sensory feedback modality significantly affected the kinematics of grasping. Larger colliders led to a smaller size-normalized peak aperture. We discuss this finding in the context of a possible influence of spherical collider size on the perception of the virtual object’s size and hence effects on motor planning of reach-to-grasp. Critically, reach-to-grasp spatiotemporal coordination patterns were robust to manipulations of sensory feedback modality and spherical collider size, suggesting that the nervous system adjusted the reach (transport) component commensurately to the changes in the grasp (aperture) component. These results have important implications for research, commercial, industrial, and clinical applications of VR. 
    more » « less
  5. null (Ed.)
    Virtual reality (VR) systems have been increasingly used in recent years in various domains, such as education and training. Presence, which can be described as ‘the sense of being there’ is one of the most important user experience aspects in VR. There are several components, which may affect the level of presence, such as interaction, visual fidelity, and auditory cues. In recent years, a significant effort has been put into increasing the sense of presence in VR. This study focuses on improving user experience in VR by increasing presence through increased interaction fidelity and enhanced illusions. Interaction in real life includes mutual and bidirectional encounters between two or more individuals through shared tangible objects. However, the majority of VR interaction to date has been unidirectional. This research aims to bridge this gap by enabling bidirectional mutual tangible embodied interactions between human users and virtual characters in world-fixed VR through real-virtual shared objects that extend from virtual world into the real world. I hypothesize that the proposed novel interaction will shrink the boundary between the real and virtual worlds (through virtual characters that affect the physical world), increase the seamlessness of the VR system (enhance the illusion) and the fidelity of interaction, and increase the level of presence and social presence, enjoyment and engagement. This paper includes the motivation, design and development details of the proposed novel world-fixed VR system along with future directions. 
    more » « less