skip to main content


Title: Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted Execution
System auditing is a central concern when investigating and responding to security incidents. Unfortunately, attackers regularly engage in anti-forensic activities after a break-in, covering their tracks from the system logs in order to frustrate the efforts of investigators. While a variety of tamper-evident logging solutions have appeared throughout the industry and the literature, these techniques do not meet the operational and scalability requirements of system-layer audit frameworks. In this work, we introduce Custos, a practical framework for the detection of tampering in system logs. Custos consists of a tamper-evident logging layer and a decentralized auditing protocol. The former enables the verification of log integrity with minimal changes to the underlying logging framework, while the latter enables near real-time detection of log integrity violations within an enterprise-class network. Custos is made practical by the observation that we can decouple the costs of cryptographic log commitments from the act of creating and storing log events, without trading off security, leveraging features of off-the-shelf trusted execution environments. Supporting over one million events per second, we show that Custos' tamper-evident logging protocol is three orders of magnitude (1000×) faster than prior solutions and incurs only between 2% and 7% runtime overhead over insecure logging on intensive workloads. Further, we show that Custos' auditing protocol can detect violations in near real-time even in the presence of a powerful distributed adversary and with minimal (3%) network overhead. Our case study on a real-world APT attack scenario demonstrates that Custos forces anti-forensic attackers into a "lose-lose" situation, where they can either be covert and not tamper with logs (which can be used for forensics), or erase logs but then be detected by Custos.  more » « less
Award ID(s):
1750024 1657534
NSF-PAR ID:
10146530
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Network and Distributed System Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For system logs to aid in security investigations, they must be beyond the reach of the adversary. Unfortunately, attackers that have escalated privilege on a host are typically able to delete and modify log events at will. In response to this threat, a variety of secure logging systems have appeared over the years that attempt to provide tamper-resistance (e.g., write once read many drives, remote storage servers) or tamper-evidence (e.g., cryptographic proofs) for system logs. These solutions expose an interface through which events are committed to a secure log, at which point they enjoy protection from future tampering. However, all proposals to date have relied on the assumption that an event's occurrence is concomitant with its commitment to the secured log. In this work, we challenge this assumption by presenting and validating a race condition attack on the integrity of audit frameworks. Our attack exploits the intrinsically asynchronous nature of I/O and IPC activity, demonstrating that an attacker can snatch events about their intrusion out of message buffers after they have occurred but before they are committed to the log, thus bypassing existing protections. We present a first step towards defending against our attack by introducing KennyLoggings, the first kernel- based tamper-evident logging system that satisfies the synchronous integrity property, meaning that it guarantees tamper-evidence of events upon their occurrence. We implement KennyLoggings on top of the Linux kernel and show that it imposes between 8% and 11% overhead on log-intensive application workloads. 
    more » « less
  2. null (Ed.)
    Audit logs play a crucial role in the security of computer systems and are targeted by the attackers due to their forensic value. Digital signatures are essential tools to ensure the authentication/integrity of logs with public verifiability and nonrepudiation. Especially, forward-secure and aggregate signatures (FAS) offer compromise-resiliency and append-only features such that an active attacker compromising a computer cannot tamper or selectively delete the logs collected before the breach. Despite their high-security, existing FAS schemes can only sign a small pre-defined number (K) of logs, and their key-size/computation overhead grows linearly with K. These limitations prevent a practical adoption of FAS schemes for digital forensics. In this paper, we created new signatures named COmpact and REsilient (CORE) schemes, which are (to the best of our knowledge) the first FAS that can sign (practically) unbounded number of messages with only a sub-linear growth in the keysize/computation overhead. Central to CORE is the creation of a novel K-time signature COREKBase that has a small-constant key generation overhead and public key size. We then develop CORE-MMM that harnesses COREK Base via forward-secure transformations. We showed that CORE-MMM significantly outperforms its alternatives for essential metrics. For instance, CORE-MMM provides more than two and one magnitudes faster key updates and smaller signatures, respectively, with smaller private keys. CORE-MMM also offers extra efficiency when the same messages are signed with evolving keys. We formally prove that CORE schemes are secure. Our analysis indicates that CORE schemes are ideal tools to enhance the trustworthiness of digital forensic applications. 
    more » « less
  3. null (Ed.)
    Auditing is an increasingly essential tool for the defense of computing systems, but the unwieldy nature of log data imposes significant burdens on administrators and analysts. To address this issue, a variety of techniques have been proposed for approximating the contents of raw audit logs, facilitating efficient storage and analysis. However, the security value of these approximated logs is difficult to measure—relative to the original log, it is unclear if these techniques retain the forensic evidence needed to effectively investigate threats. Unfortunately, prior work has only investigated this issue anecdotally, demonstrating sufficient evidence is retained for specific attack scenarios. In this work, we address this gap in the literature through formalizing metrics for quantifying the forensic validity of an approximated audit log under differing threat models. In addition to providing quantifiable security arguments for prior work, we also identify a novel point in the approximation design space—that log events describing typical (benign) system activity can be aggressively approximated, while events that encode anomalous behavior should be preserved with lossless fidelity. We instantiate this notion of Attack-Preserving forensic validity in LogApprox, a new approximation technique that eliminates the redundancy of voluminous file I/O associated with benign process activities. We evaluate LogApprox alongside a corpus of exemplar approximation techniques from prior work and demonstrate that LogApprox achieves comparable log reduction rates while retaining 100% of attack-identifying log events. Additionally, we utilize this evaluation to illuminate the inherent trade-off between performance and utility within existing approximation techniques. This work thus establishes trustworthy foundations for the design of the next generation of efficient auditing frameworks. 
    more » « less
  4. null (Ed.)
    Recent advances in the causal analysis can accelerate incident response time, but only after a causal graph of the attack has been constructed. Unfortunately, existing causal graph generation techniques are mainly offline and may take hours or days to respond to investigator queries, creating greater opportunity for attackers to hide their attack footprint, gain persistency, and propagate to other machines. To address that limitation, we present Swift, a threat investigation system that provides high-throughput causality tracking and real-time causal graph generation capabilities. We design an in-memory graph database that enables space-efficient graph storage and online causality tracking with minimal disk operations. We propose a hierarchical storage system that keeps forensically-relevant part of the causal graph in main memory while evicting rest to disk. To identify the causal graph that is likely to be relevant during the investigation, we design an asynchronous cache eviction policy that calculates the most suspicious part of the causal graph and caches only that part in the main memory. We evaluated Swift on a real-world enterprise to demonstrate how our system scales to process typical event loads and how it responds to forensic queries when security alerts occur. Results show that Swift is scalable, modular, and answers forensic queries in real-time even when analyzing audit logs containing tens of millions of events. 
    more » « less
  5. The pervasive use of databases for the storage of critical and sensitive information in many organizations has led to an increase in the rate at which databases are exploited in computer crimes. While there are several techniques and tools available for database forensic analysis, such tools usually assume an apriori database preparation, such as relying on tamper-detection software to already be in place and the use of detailed logging. Further, such tools are built-in and thus can be compromised or corrupted along with the database itself. In practice, investigators need forensic and security audit tools that work on poorlyconfigured systems and make no assumptions about the extent of damage or malicious hacking in a database. In this paper, we present our database forensics methods, which are capable of examining database content from a storage (disk or RAM) image without using any log or file system metadata. We describe how these methods can be used to detect security breaches in an untrusted environment where the security threat arose from a privileged user (or someone who has obtained such privileges). Finally, we argue that a comprehensive and independent audit framework is necessary in order to detect and counteract threats in an environment where the security breach originates from an administrator (either at database or operating system level). 
    more » « less