System auditing is a central concern when investigating and responding to security incidents. Unfortunately, attackers regularly engage in anti-forensic activities after a break-in, covering their tracks from the system logs in order to frustrate the efforts of investigators. While a variety of tamper-evident logging solutions have appeared throughout the industry and the literature, these techniques do not meet the operational and scalability requirements of system-layer audit frameworks. In this work, we introduce Custos, a practical framework for the detection of tampering in system logs. Custos consists of a tamper-evident logging layer and a decentralized auditing protocol. The former enables the verification of log integrity with minimal changes to the underlying logging framework, while the latter enables near real-time detection of log integrity violations within an enterprise-class network. Custos is made practical by the observation that we can decouple the costs of cryptographic log commitments from the act of creating and storing log events, without trading off security, leveraging features of off-the-shelf trusted execution environments. Supporting over one million events per second, we show that Custos' tamper-evident logging protocol is three orders of magnitude (1000×) faster than prior solutions and incurs only between 2% and 7% runtime overhead over insecure logging on intensive workloads. Further, we show that Custos' auditing protocol can detect violations in near real-time even in the presence of a powerful distributed adversary and with minimal (3%) network overhead. Our case study on a real-world APT attack scenario demonstrates that Custos forces anti-forensic attackers into a "lose-lose" situation, where they can either be covert and not tamper with logs (which can be used for forensics), or erase logs but then be detected by Custos. 
                        more » 
                        « less   
                    
                            
                            On the Forensic Validity of Approximated Audit Logs
                        
                    
    
            Auditing is an increasingly essential tool for the defense of computing systems, but the unwieldy nature of log data imposes significant burdens on administrators and analysts. To address this issue, a variety of techniques have been proposed for approximating the contents of raw audit logs, facilitating efficient storage and analysis. However, the security value of these approximated logs is difficult to measure—relative to the original log, it is unclear if these techniques retain the forensic evidence needed to effectively investigate threats. Unfortunately, prior work has only investigated this issue anecdotally, demonstrating sufficient evidence is retained for specific attack scenarios. In this work, we address this gap in the literature through formalizing metrics for quantifying the forensic validity of an approximated audit log under differing threat models. In addition to providing quantifiable security arguments for prior work, we also identify a novel point in the approximation design space—that log events describing typical (benign) system activity can be aggressively approximated, while events that encode anomalous behavior should be preserved with lossless fidelity. We instantiate this notion of Attack-Preserving forensic validity in LogApprox, a new approximation technique that eliminates the redundancy of voluminous file I/O associated with benign process activities. We evaluate LogApprox alongside a corpus of exemplar approximation techniques from prior work and demonstrate that LogApprox achieves comparable log reduction rates while retaining 100% of attack-identifying log events. Additionally, we utilize this evaluation to illuminate the inherent trade-off between performance and utility within existing approximation techniques. This work thus establishes trustworthy foundations for the design of the next generation of efficient auditing frameworks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750024
- PAR ID:
- 10232054
- Date Published:
- Journal Name:
- Annual Computer Security Applications Conference
- Page Range / eLocation ID:
- 189 to 202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            System auditing is an essential tool for detecting malicious events and conducting forensic analysis. Although used extensively on general-purpose systems, auditing frameworks have not been designed with consideration for the unique constraints and properties of Real-Time Systems (RTS). System auditing could provide tremendous benefits for security-critical RTS. However, a naive deployment of auditing on RTS could violate the temporal requirements of the system while also rendering auditing incomplete and ineffectual. To ensure effective auditing that meets the computational needs of recording complete audit information while adhering to the temporal requirements of the RTS, it is essential to carefully integrate auditing into the real-time (RT) schedule. This work adapts the Linux Audit framework for use in RT Linux by leveraging the common properties of such systems, such as special purpose and predictability.Ellipsis, an efficient system for auditing RTS, is devised that learns the expected benign behaviors of the system and generates succinct descriptions of the expected activity. Evaluations using varied RT applications show thatEllipsisreduces the volume of audit records generated during benign activity by up to 97.55% while recording detailed logs for suspicious activities. Empirical analyses establish that the auditing infrastructure adheres to the properties of predictability and isolation that are important to RTS. Furthermore, the schedulability of RT tasksets under audit is comprehensively analyzed to enable the safe integration of auditing in RT task schedules.more » « less
- 
            Cyberattacks continue to evolve and adapt to state-of-the-art security mechanisms. Therefore, it is critical for security experts to routinely inspect audit logs to detect complex security breaches. However, if a system was compromised during a cyberattack, the validity of the audit logs themselves cannot necessarily be trusted. Specifically, for a database management system (DBMS), an attacker with elevated privileges may temporarily disable the audit logs, bypassing logging altogether along with any tamper-proof logging mechanisms. Thus, security experts need techniques to validate logs independent of a potentially compromised system to detect security breaches. This paper demonstrates that SQL query operations produce a repeatable set of patterns within DBMS process memory. Operations such as full table scans, index accesses, or joins each produce their own set of distinct forensic artifacts in memory. Given these known patterns, we propose that collecting forensic artifacts from a trusted memory snapshot allows one to reverse-engineer query activity and validate audit logs independent of the DBMS itself and outside the scope of a database administrator's privileges. We rely on the fact the queries must ultimately be processed in memory regardless of any security mechanisms they may have bypassed. This work is generalized to all relational DBMSes by using two representative DBMSes, Oracle and MySQL.more » « less
- 
            Auditing, a central pillar of operating system security, has only recently come into its own as an active area of public research. This resurgent interest is due in large part to the notion of data provenance, a technique that iteratively parses audit log entries into a dependency graph that explains the history of system execution. Provenance facilitates precise threat detection and investigation through causal analysis of sophisticated intrusion behaviors. However, the absence of a foundational audit literature, combined with the rapid publication of recent findings, makes it difficult to gain a holistic picture of advancements and open challenges in the area.In this work, we survey and categorize the provenance-based system auditing literature, distilling contributions into a layered taxonomy based on the audit log capture and analysis pipeline. Recognizing that the Reduction Layer remains a key obstacle to the further proliferation of causal analysis technologies, we delve further on this issue by conducting an ambitious independent evaluation of 8 exemplar reduction techniques against the recently-released DARPA Transparent Computing datasets. Our experiments uncover that past approaches frequently prune an overlapping set of activities from audit logs, reducing the synergistic benefits from applying them in tandem; further, we observe an inverse relation between storage efficiency and anomaly detection performance. However, we also observe that log reduction techniques are able to synergize effectively with data compression, potentially reducing log retention costs by multiple orders of magnitude. We conclude by discussing promising future directions for the field.more » « less
- 
            System auditing is a powerful tool that provides insight into the nature of suspicious events in computing systems, allowing machine operators to detect and subsequently investigate security incidents. While auditing has proven invaluable to the security of traditional computers, existing audit frameworks are rarely designed with consideration for Real-Time Systems (RTS). The transparency provided by system auditing would be of tremendous benefit in a variety of security-critical RTS domains, (e.g., autonomous vehicles); however, if audit mechanisms are not carefully integrated into RTS, auditing can be rendered ineffectual and violate the real-world temporal requirements of the RTS. In this paper, we demonstrate how to adapt commodity audit frameworks to RTS. Using Linux Audit as a case study, we first demonstrate that the volume of audit events generated by commodity frameworks is unsustainable within the temporal and resource constraints of real-time (RT) applications. To address this, we present Ellipsis, a set of kernel-based reduction techniques that leverage the periodic repetitive nature of RT applications to aggressively reduce the costs of system-level auditing. Ellipsis generates succinct descriptions of RT applications’ expected activity while retaining a detailed record of unexpected activities, enabling analysis of suspicious activity while meeting temporal constraints. Our evaluation of Ellipsis, using ArduPilot (an open-source autopilot application suite) demonstrates up to 93% reduction in audit log generation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    