skip to main content

Title: Robust, sustainable and multifunctional nanofibers with smart switchability for water-in-oil and oil-in-water emulsion separation and liquid marble preparation
Various membranes have been developed for the separation of oil/water mixtures; however, their fabrication requires toxic reagents, multiple processing steps, and advanced technologies. Nature not only precisely generates unique materials but also provides tremendous examples in the environment that can be used as inspiration for the development and creation of smart and green materials. In this study, we prepare multifunctional nanobiofibers (NBFs) from grape seeds by a one-pot reaction using green solvents that, when made into a smart layer, can switch between a state of underwater superoleophobic wetting to a state of underoil superhydrophobicity and back without any external stimuli. The several μm length and 50 nm width NBFs exhibit robust stability and provide a porous NBF layer, suggesting their potential for the simultaneous separation of various surfactant-stabilized water-in-oil and oil-in-water emulsions while showing high dye adsorption from water (100% for methylene blue). Furthermore, by rolling water droplets on the surface of NBF powder, an effective microreactor, known as a liquid marble, is prepared for the first time using a bio-originated, superamphiphilic material in air, rather than hydrophilic or hydrophobic materials, and it can be used to remove dye within 30 s. Moreover, based on the ability of NBFs to more » encapsulate a high volume of water (120 μL), we demonstrate another application of the NBF powder as an additive to soil for maintaining soil moisture under arid conditions, allowing us to successfully demonstrate the growth of a lentil seed. This multi-functional, low-cost, and green NBF material shows excellent sustainability and mechanical/chemical stability for multiple promising environmental remediation applications. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Materials Chemistry A
Page Range or eLocation-ID:
26456 to 26468
Sponsoring Org:
National Science Foundation
More Like this
  1. Lignin@Fe 3 O 4 nanoparticles adsorb at oil–water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe 3 O 4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0–540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water ratio of 50/50 and above. Increasing the concentration of lignin@Fe 3 O 4 improved the emulsion stability and demulsification rates with 540 mT applied magnetic field strength. The adsorption of lignin@Fe 3 O 4 nanoparticles at the oil/water interface using 1-pentanol evaporation through Marangoni effects was demonstrated, and magnetic manipulation of a lignin@Fe 3 O 4 stabilized castor oil spill in water was shown. Nanoparticle concentration and applied magnetic field strengths were analyzed for the recovery of spilled oil from water; it was observed that increasing the magnetic strength increased oil spill motion formore »a lignin@Fe 3 O 4 concentration of up to 0.8 mg mL −1 at 540 mT. Overall, this study demonstrates the potential of lignin-magnetite nanocomposites for rapid on-demand magnetic responses to externally induced stimuli.« less
  2. The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene- block -methymethacrylate) (PS- b -PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO,more »demonstrates the broader applications of such membranes.« less
  3. Abstract

    Methods for the efficient and affordable remediation of oil spills and chemical leaks are crucially needed in today’s environment. In this study, we have developed a simple, magnetic, porous material based on polydimethylsiloxane (PDMS) and steel wool (SW) that can fulfill these needs. The PDMS-SW presented here is superhydrophobic, superoleophilic, and capable of absorbing and separating oils and organic solvents from water. The material is mechanically and chemically stable, even in salty environments, and can be magnetically guided. It exhibits good selectivity, recyclability, and sorption capacity, and can quickly and continuously absorb and remove large amounts of oils and organic solutions from stationary and turbulent water. In addition, PDMS-SW’s inherently high porosity enables direct, gravity-driven oil-water separation with permeate flux as high as ~32,000 L/m2·h and separation efficiency over 99%. The solution immersion process used to prepare the material is easily scalable and requires only a single step. Thus, with its demonstrated combination of affordability, efficiency, and ease of use, PDMS-SW has the potential to meet the demands of large-area oil and chemical clean-ups.

  4. Membrane-based separation technologies are the cornerstone of remediating unconventional water sources, including brackish and industrial or municipal wastewater, as they are relatively energy-efficient and versatile. However, membrane fouling by dissolved and suspended substances in the feed stream remains a primary challenge that currently prevents these membranes from being used in real practices. Thus, we directly address this challenge by applying a superhydrophilic and oleophobic coating to a commercial membrane surface which can be utilized to separate and desalinate an oil and saline water mixture, in addition to photocatalytically degrading the organic substances. We fabricated the photocatalytic membrane by coating a commercial membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The membrane was placed under a UV light, which resulted in a chemically heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, respectively) that were securely bound to the commercial membrane surface. We demonstrated that the coated membrane could be utilized for continuous separation and desalination of an oil–saline water mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on the membrane surface upon visible light irradiation.
  5. Separating oil-water mixtures is critical in a variety of practical applications, including the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum products. Among various methodologies that have been utilized, membranes are the most attractive technology for separating oil-water emulsions. In recent years, selective wettability membranes have attracted particular attention for oil-water separations. The membrane surfaces with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for oil-water separations in comparison with underwater oleophobic membranes. However, developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The coating delamination process is a critical challenge when applying these membranes for separations. Inspired by the above, in this study we utilize poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane (MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for further oil-water separations.