- Award ID(s):
- 1763272
- NSF-PAR ID:
- 10146639
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 12
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaay3704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Split thickness skin grafts (STSGs) are one of the standard treatments available for full thickness wound repair when full thickness grafts (FTGs) are not viable, such as in the case of wounds with large surface areas. The donor sites of STSGs may be harvested repeatedly, but STSG transplants are still limited by insufficient blood supply at the early stages of wound healing. Prevascularized human mesenchymal stem cell (hMSC) sheets may accelerate wound healing and improve regeneration by providing pre-formed vessel structures and angiogenic factors to overcome this limitation. This book chapter provides the protocol of co-culturing hMSCs and endothelial cells to attain a prevascularized hMSC cell sheet (PHCS). The protocols for implantation of the prevascularized stem cell sheet for full thickness skin wound repair in a rat autologous skin graft model as well as the evaluation of the wound healing effects are also provided.more » « less
-
Abstract Chronic wounds are characterized by impaired healing and uncontrolled inflammation, which compromise the protective role of the immune system and may lead to bacterial infection. Upregulation of miR‐223 microRNAs (miRNAs) shows driving of the polarization of macrophages toward the anti‐inflammatory (M2) phenotype, which could aid in the acceleration of wound healing. However, local‐targeted delivery of microRNAs is still challenging, due to their low stability. Here, adhesive hydrogels containing miR‐223 5p mimic (miR‐223*) loaded hyaluronic acid nanoparticles are developed to control tissue macrophages polarization during wound healing processes. In vitro upregulation of miR‐223* in J774A.1 macrophages demonstrates increased expression of the anti‐inflammatory gene Arg‐1 and a decrease in proinflammatory markers, including TNF‐α, IL‐1β, and IL‐6. The therapeutic potential of miR‐223* loaded adhesive hydrogels is also evaluated in vivo. The adhesive hydrogels could adhere to and cover the wounds during the healing process in an acute excisional wound model. Histological evaluation and quantitative polymerase chain reaction (qPCR) analysis show that local delivery of miR‐223* efficiently promotes the formation of uniform vascularized skin at the wound site, which is mainly due to the polarization of macrophages to the M2 phenotype. Overall, this study demonstrates the potential of nanoparticle‐laden hydrogels conveying miRNA‐223* to accelerate wound healing.
-
Wound healing is one of the most complex processes in the human body, supported by many cellular events that are tightly coordinated to repair the wound efficiently. Chronic wounds have potentially life-threatening consequences. Traditional wound dressings come in direct contact with wounds to help them heal and avoid further complications. However, traditional wound dressings have some limitations. These dressings do not provide real-time information on wound conditions, leading clinicians to miss the best time for adjusting treatment. Moreover, the current diagnosis of wounds is relatively subjective. Wearable electronics have become a unique platform to potentially monitor wound conditions in a continuous manner accurately and even to serve as accelerated healing vehicles. In this review, we briefly discuss the wound status with some objective parameters/biomarkers influencing wound healing, followed by the presentation of various novel wearable devices used for monitoring wounds and accelerating wound healing. We further summarize the associated device working principles. This review concludes by highlighting some major challenges in wearable devices toward wound healing that need to be addressed by the research community.more » « less
-
Abstract Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus , a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor . We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm 2 /s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor : contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor , was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved.more » « less
-
Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.